The formation of uniform straw-like β-FeOOH nanostructures with superior catalytic performance for the degradation of Rhodamine B

Abstract

In this work, uniform straw-like akaganeite (β-FeOOH) nanostructures with superior catalytic performance were successfully prepared via a facile hydrothermal method. The as-prepared uniform straw-like β-FeOOH nanostructures were characterized by various techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-Visible (UV-vis) spectroscopy, UV-vis diffused reflection spectra (UV-vis DRS), and X-ray photoelectron spectroscopy (XPS). The optical property of β-FeOOH was investigated and the catalytic activity of β-FeOOH was also systematically evaluated in a Fenton process for the degradation of Rhodamine B (RhB). Based on the experimental results and analysis, it could be concluded that the as-prepared β-FeOOH nanostructures exhibited wide absorption wavelength range which was approximately 200–680 nm. The degradation efficiency of RhB reached 90% and the color of RhB solutions transformed from fresh pink to colorless after 9 h.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abdellah AR, Abdelhamid HN, El-Adasy A-BAAM, Atalla AA, Aly KI (2020) One-pot synthesis of hierarchical porous covalent organic frameworks and two-dimensional nanomaterials for selective removal of anionic dyes. J Environ Chem Eng 8(5):104054. https://doi.org/10.1016/j.jece.2020.104054

    CAS  Article  Google Scholar 

  2. Abdel-Samad H, Watson P (1998) An XPS study of the adsorption of lead on goethite (α-FeOOH). Appl Surf Sci 136:46–54. https://doi.org/10.1016/S0169-4332(98)00337-7

  3. Al Kahtani A (2017) Photocatalytic degradation of Rhodamine B dye in wastewater using gelatin/CuS/PVA nanocomposites under solar light irradiation. J Biomater Nanobiotechnol 08:66–82. https://doi.org/10.4236/jbnb.2017.81005

    CAS  Article  Google Scholar 

  4. Arumugam M, Arunachalam P, Grace AN, Jagannathan M, Al-Mayouf A (2017) A robust visible-light driven BiFeWO6/BiOI nanohybrid with efficient photocatalytic and photoelectrochemical performance. Appl Surf Sci 412:85–95. https://doi.org/10.1016/j.apsusc.2017.03.199

  5. Baral A, Das DP, Minakshi M, Ghosh MK, Padhi DK (2016) Probing environmental remediation of RhB organic dye using α-MnO2 under visible- light irradiation: structural, photocatalytic and mineralization studies. Chemistryselect 1(14):4277–4285. https://doi.org/10.1002/slct.201600867

  6. Casey K, Quitevis E (1988) Effect of solvent polarity on nonradiative processes in xanthene dyes: Rhodamine B in normal alcohols. J Phys Chem 92:6590–6594. https://doi.org/10.1021/j100334a023

    CAS  Article  Google Scholar 

  7. Chandra R, Nath M (2017) Multi-core–shell TiO2NPs@ZIF-8 composite for enhanced photocatalytic degradation and adsorption of methylene blue and Rhodamine-B. Chemistryselect 2(25):7711–7722. https://doi.org/10.1002/slct.201701195

  8. Chang S-H, Wang K-S, Li H-C, Wey M-Y, Chou J-D (2009) Enhancement of Rhodamine B removal by low-cost fly ash sorption with Fenton pre-oxidation. J Hazard Mater 172:1131–1136. https://doi.org/10.1016/j.jhazmat.2009.07.106

    CAS  Article  Google Scholar 

  9. Chithambararaj A, Sanjini NS, Bose AC, Velmathi S (2013) Flower-like hierarchical H-MoO3: new findings of efficient visible light driven nano photocatalyst for methylene blue degradation. Catal Sci Technol 3:1405

  10. Deng Y, Zhao R (2015) Advanced oxidation processes (AOPs) in wastewater treatment. Curr Pollut Rep 1(3):167–176. https://doi.org/10.1007/s40726-015-0015-z

    CAS  Article  Google Scholar 

  11. Ding M, Jong BHWS, Roosendaal SJ, Vredenberg AM (2000) XPS studies on the electronic structure of bonding between solid and solutes: adsorption of arsenate, chromate, phosphate, Pb 2+, and Zn 2+ ions on amorphous black ferric oxyhydroxide. Geochim Cosmochim Acta 64:1209–1219. https://doi.org/10.1016/S0016-7037(99)00386-5

  12. Ding X, Gutierrez L, Croue J-P, Li M, Wang L, Wang Y (2020) Hydroxyl and sulfate radical-based oxidation of RhB dye in UV/H2O2 and UV/persulfate systems: kinetics, mechanisms, and comparison. Chemosphere 253:126655. https://doi.org/10.1016/j.chemosphere.2020.126655

  13. Etman AS, Abdelhamid HN, Yuan Y, Wang L, Zou X, Sun J (2018) Facile water-based strategy for synthesizing MoO3–x nanosheets: efficient visible light photocatalysts for dye degradation. ACS Omega 3(2):2193–2201. https://doi.org/10.1021/acsomega.8b00012

  14. Fenton HJH (1894) LXXIII. - Oxidation of tartaric acid in presence of iron. J Chem Soc Trans 65:899–910. https://doi.org/10.1039/CT8946500899

    CAS  Article  Google Scholar 

  15. Gao Y, Wang Y, Zhang H (2015) Removal of Rhodamine B with Fe-supported bentonite as heterogeneous photo-Fenton catalyst under visible irradiation. Appl Catal B Environ 178:29–36. https://doi.org/10.1016/j.apcatb.2014.11.005

    CAS  Article  Google Scholar 

  16. Goldstein S, Meyerstein D, Czapski G (1993) The Fenton reagents. Free Radic Biol Med 15(4):435–445. https://doi.org/10.1016/0891-5849(93)90043-T

    CAS  Article  Google Scholar 

  17. Guo L, Zhang K, Han X, Zhao Q, Wang D, Fu F, Liang Y (2020) Highly efficient visible-light-driven photo-Fenton catalytic performance over FeOOH/Bi2WO6 composite for organic pollutant degradation. J Alloys Compd 816:152560. https://doi.org/10.1016/j.jallcom.2019.152560

  18. Huang YH, Huang YF, Chang PS, Chen CY (2008) Comparative study of oxidation of dye-Reactive Black B by different advanced oxidation processes: Fenton, electro-Fenton and photo-Fenton. J Hazard Mater 154(1–3):655–662. https://doi.org/10.1016/j.jhazmat.2007.10.077

    CAS  Article  Google Scholar 

  19. Huang H, Liu K, Zhang Y, Chen K, Zhang Y, Tian N (2014) Tunable 3D hierarchical graphene-BiOI nanoarchitectures: their in situ preparation, and highly improved photocatalytic performance and photoelectrochemical properties under visible light irradiation. RSC Adv 4:49386–49394. https://doi.org/10.1039/C4RA07533A

    CAS  Article  Google Scholar 

  20. Kassem AA, Abdelhamid HN, Fouad DM, Ibrahim SA (2020) Hydrogenation reduction of dyes using metal-organic framework-derived CuO@C. Microporous Mesoporous Mater 305:110340. https://doi.org/10.1016/j.micromeso.2020.110340

    CAS  Article  Google Scholar 

  21. Kaur A, Umar A, Anderson WA, Kansal SK (2018) Facile synthesis of CdS/TiO2 nanocomposite and their catalytic activity for ofloxacin degradation under visible illumination. J Photochem Photobiol A Chem 360:34–43. https://doi.org/10.1016/j.jphotochem.2018.04.021

  22. Liu W, Wang Y, Ai Z, Zhang L (2015) Hydrothermal synthesis of FeS2 as a high-efficiency Fenton reagent to degrade alachlor via superoxide-mediated Fe (II)/Fe (III) cycle. ACS Appl Mater Interfaces 7(51):28534–28544. https://doi.org/10.1021/acsami.5b09919

  23. Liu J, Zheng M, Shi X, Zeng H, Xia H (2016) Amorphous FeOOH quantum dots assembled mesoporous film anchored on graphene nanosheets with superior electrochemical performance for supercapacitors. Adv Funct Mater 26(6):919–930. https://doi.org/10.1002/adfm.201504019

    CAS  Article  Google Scholar 

  24. Ma W, Wu Y, Han C (2019) Synthesis of β-FeOOH and photophenton catalytic degradation of Rhodamine B. ChemistrySelect 4(34):10181–10186. https://doi.org/10.1002/slct.201901226

    CAS  Article  Google Scholar 

  25. Malathi A, Arunachalam P, Madhavan J, Al-Mayouf AM, Ghanem MA (2018) Rod-on-flake α-FeOOH/BiOI nanocomposite: facile synthesis, characterization and enhanced photocatalytic performance. Colloids Surf A Physicochem Eng Asp 537:435–445. https://doi.org/10.1016/j.colsurfa.2017.10.036

    CAS  Article  Google Scholar 

  26. Mittal A, Malviya A, Jaspal D, Mittal J, Kurup L (2007) Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials. J Hazard Mater 148:229–240. https://doi.org/10.1016/j.jhazmat.2007.02.028

    CAS  Article  Google Scholar 

  27. Nestmann ER, Douglas GR, Matula TI, Grant CE, Kowbel DJ (1979) Mutagenic activity of Rhodamine dyes and their impurities as detected by mutation induction in Salmonella and DNA damage in Chinese hamster ovary cells. Cancer Res 39(11):4412–4417

    CAS  Google Scholar 

  28. Ortiz de la Plata GB, Alfano OM, Cassano AE (2008) Optical properties of goethite catalyst for heterogeneous photo-Fenton reactions. Comparison with a titanium dioxide catalyst. Chem Eng J 137(2):396–410. https://doi.org/10.1016/j.cej.2007.05.008

    CAS  Article  Google Scholar 

  29. Richardson S, Willson C, Rusch K (2004) Use of Rhodamine water tracer in the marshland upwelling system. Ground Water 42:678–688. https://doi.org/10.1111/j.1745-6584.2004.tb02722.x

    CAS  Article  Google Scholar 

  30. Schwarzenbach R, Escher B, Fenner K, Hofstetter T, Johnson C, Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313:1072–1077. https://doi.org/10.1126/science.1127291

    CAS  Article  Google Scholar 

  31. Shafi PM, Dhanabal R, Chithambararaj A, Velmathi S, Bose AC (2017) α-MnO2/h-MoO3 hybrid material for high performance supercapacitor electrode and photocatalyst. ACS Sustain Chem Eng 5:4757

  32. Sheng Y, Sun Y, Xu J, Zhang J, Han Y-F (2017) Fenton-like degradation of Rhodamine B over highly durable Cu-embedded alumina: kinetics and mechanism. AICHE J 64:538–549. https://doi.org/10.1002/aic.15937

    CAS  Article  Google Scholar 

  33. Sherman D (2005) Electronic structures of iron (III) and manganese (IV) (hydr) oxide minerals: thermodynamics of photochemical reductive dissolution in aquatic environments. Geochim Cosmochim Acta 69:3249–3255. https://doi.org/10.1016/j.gca.2005.01.023

    CAS  Article  Google Scholar 

  34. Song X, Boily J-F (2012) Competitive ligand exchange on akaganeite surfaces enriches bulk chloride loadings. J Colloid Interface Sci 376:331–333. https://doi.org/10.1016/j.jcis.2012.03.006

    CAS  Article  Google Scholar 

  35. Thi Dieu Thuy U, Quang Liem N, Parlett CMA, Lalev G, Wilson K (2014) Synthesis of CuS and CuS/ZnS core/shell nanocrystals for photocatalytic degradation of dyes under visible light. Catal Commun 44:62–67. https://doi.org/10.1016/j.catcom.2013.07.030

  36. Wang X, Tian H, Yang Y, Wang H, Wang S, Zheng W, Liu Y (2012) Reduced graphene oxide/CdS for efficiently photocatalystic degradation of methylene blue. J Alloys Compd 524:5–12. https://doi.org/10.1016/j.jallcom.2012.02.058

    CAS  Article  Google Scholar 

  37. Xiong P, Zhu J, Wang X (2013) Cadmium sulfide–ferrite nanocomposite as a magnetically recyclable photocatalyst with enhanced visible-light-driven photocatalytic activity and photostability. Ind Eng Chem Res 52:17126–17133. https://doi.org/10.1021/ie402437k

    CAS  Article  Google Scholar 

  38. Xu H-Y, Qi S-Y, Li Y, Zhao Y, Li J-W (2013) Heterogeneous Fenton-like discoloration of Rhodamine B using natural schorl as catalyst: optimization by response surface methodology. Environ Sci Pollut Res Int 20:5764–5772. https://doi.org/10.1007/s11356-013-1578-0

    CAS  Article  Google Scholar 

  39. Xu Z, Yu Y, Fang D, Xu J, Liang J, Zhou L (2015) Microwave ultrasound assisted synthesis of beta-FeOOH and its catalytic property in a photo-Fenton-like process. Ultrason Sonochem 27:287–295. https://doi.org/10.1016/j.ultsonch.2015.05.039

    CAS  Article  Google Scholar 

  40. Yang J, Sun X, Zeng C, Wang X, Hu Y, Zeng T, Shi J (2019) Highly improved photocatalytic degradation of rhodamine B over Bi2 Ga4−x Fex O9 solid solutions under visible light irradiation. RSC Adv 9:26894–26901. https://doi.org/10.1039/C9RA04632A

  41. Zeng Y, Zeng Z, Ju T, Zhang F (2015) Adsorption performance and mechanism of perchloroethylene on a novel nano composite β-FeOOH-AC. Microporous Mesoporous Mater 210:60–68. https://doi.org/10.1016/j.micromeso.2015.02.021

    CAS  Article  Google Scholar 

  42. Zhang Y-X, Jia Y (2014) A facile solution approach for the synthesis of akaganéite (β-FeOOH) nanorods and their ion-exchange mechanism toward As(V) ions. Appl Surf Sci 290:102–106. https://doi.org/10.1016/j.apsusc.2013.11.007

    CAS  Article  Google Scholar 

  43. Zhang H, Wu X, Li X (2012) Oxidation and coagulation removal of COD from landfill leachate by Fered-Fenton process. Chem Eng J 210:188–194. https://doi.org/10.1016/j.cej.2012.08.094

    CAS  Article  Google Scholar 

  44. Zhao Y, Hu J, Chen H (2010) Elimination of estrogen and its estrogenicity by heterogeneous photo-Fenton catalyst beta-FeOOH/resin. J Photochem Photobiol A Chem 212(2–3):94–100. https://doi.org/10.1016/j.jphotochem.2010.04.001

    CAS  Article  Google Scholar 

  45. Zheng Y, Zhang Z, Li C (2016) Beta-FeOOH-supported graphitic carbon nitride as an efficient visible light photocatalyst. J Mol Catal A Chem 423:463–471. https://doi.org/10.1016/j.molcata.2016.07.032

    CAS  Article  Google Scholar 

  46. Zhou Y, Cui R, Dang Y, Li Y, Zou Y (2019) Doping controlled oxygen vacancies of ZnWO4 as a novel and effective sensing platform for carbendazim and biomolecule. Sensors Actuators B Chem 296:126680. https://doi.org/10.1016/j.snb.2019.126680

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 61575087), the Natural Science Foundation of Jiangsu Province (Grant No. BK20151164), and the Training Programs of Innovation and Entrepreneurship for Undergraduates of Jiangsu Province (Grant No. 202010320143Y).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ying Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, W., Zhang, Y., Li, Y. et al. The formation of uniform straw-like β-FeOOH nanostructures with superior catalytic performance for the degradation of Rhodamine B. J Nanopart Res 23, 19 (2021). https://doi.org/10.1007/s11051-020-05116-x

Download citation

Keywords

  • Akaganeite
  • Nanostructure
  • Hydrothermal method
  • Fenton
  • Catalysis