Li2CoTi3O8 and its composite nanofibers as high performance and long cycle lithium ion electrode materials

Abstract

In this work, Li2CoTi3O8 nanofibers and Li2CoTi3O8·CoTiO3·TiO2 (LCT) composite nanofibers as anode materials in lithium-ion batteries (LIBs) were successfully prepared by a traditional electrospinning technology, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and mappings. XRD confirms that the composite materials lattice planes well correspond to the patterns of Li2CoTi3O8, CoTiO3, and TiO2, respectively. SEM and TEM exhibits the fabricated composites are one-dimensional nanofibers with the diameter of 250~300 nm and 150~200 nm after annealing, respectively. The electrochemical properties of the materials for LIBs are investigated to indicate that the (LCT) composite nanofibers hold high reversible capacity of 201.68 mAh g−1 after 120 cycles and high rate capability at different current densities.

Li2CoTi3O8·CoTiO3·TiO2 (LCT) composite nanofibers were prepared through a electrospinning, which hold high reversible capacity of 201.68 mAh g−1 after 120 cycles and high rate capability at different current densities.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ahn D, Xiao XC (2011) Extended lithium titanate cycling potential window with near zero capacity loss. Electrochem Commun 13:796–799

    CAS  Article  Google Scholar 

  2. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347

    CAS  Article  Google Scholar 

  3. Cheng Z, Hu Y, Wu K, Xing Y, Pan P, Jiang L, Mao J, Ni C, Wang Z, Zhang M, Zhang Y, Gu X, Zhang X (2020) Si/TiO2/Ti2O3 composite carbon nanofiber by one-step heat treatment with highly enhanced ion/electron diffusion rates for next-generation lithium-ion batteries. Electrochim Acta 337:135789

    CAS  Article  Google Scholar 

  4. Cusenza M, Bobba S, Ardente F, Cellura M, Persio F (2019) Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles. J Clean Prod 215:634–649

    CAS  Article  Google Scholar 

  5. Goriparti S, Miele E, Angelis F, Fabrizio E, Zaccaria P, Capigliaa C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443

    CAS  Article  Google Scholar 

  6. Han Y, Huang GY, Xu SM (2019) Structural reorganization-based nanomaterials as anodes for lithium-ion batteries: design, preparation, and performance. Small 16:1902841

  7. He ZX, Jiang YQ, Zhu J, Li YH, Jiang Z, Zhou HZ, Meng W, Wang L, Dai L (2017) Boosting the performance of LiTi2(PO4)3/C anode for aqueous lithium ion battery by Sn doping on Ti sites. J Alloys Compd 731:32–38

    Article  Google Scholar 

  8. Hou L, Qin X, Gao XJ, Guo T, Li X, Li J (2018) Zrdoped Li4Ti5O12 anode materials with high specific capacity for lithium-ion batteries. J Alloys Compd 774:38–45

    Article  Google Scholar 

  9. Huang B, Pan Z, Su X, An L (2018) Recycling of lithium-ion batteries: recent advances and perspectives. J Power Sources 399:274–286

    CAS  Article  Google Scholar 

  10. Huff L, Tavassol H, Esbenshade J, Xing WT, Chiang YM, Gewirth A (2016) Identification of Li-ion battery SEI compounds through 7Li and 13C solid-state MAS NMR spectroscopy and MALDI-TOF mass spectrometry. ACS Appl Mater Interfaces 8:371–380

    CAS  Article  Google Scholar 

  11. Jeong J, Junge D, Shin E, Oh E (2014) Boron-doped TiO2 anode materials for high-rate lithium ion batteries. J Alloys Compd 604:226–232

    CAS  Article  Google Scholar 

  12. Jung JW, Lee C, Yu S, Kim I (2015) Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review. J Mater Chem A 10:703–750

    Google Scholar 

  13. Kamali A, Fray D (2015) Electrochemical interaction between graphite and molten salts to produce nanotubes, nanoparticles, graphene and nanodiamonds. J Mater Sci 51:569–576

    Article  Google Scholar 

  14. Lao MM, Qian SS, Yu HX, Yan L, Li P, Lin XT, Long NB, Shui M, Shu J (2016) Enhanced electrochemical properties of Mg2+ doped Li2Na2Ti6O14 anode material for lithium-ion batteries. Electrochim Acta 2016(196):642–652

    Article  Google Scholar 

  15. Leng MZ, Bi JQ, Wang WL, Liu R, Xia C (2019) Synthesis and characterization of Ru doped NaNi0.5Mn0.3Ti0.2O2 cathode material with improved electrochemical performance for sodium-ion batteries. Ionics 25:1105–1115

    CAS  Article  Google Scholar 

  16. Liu SY, Fan CY, Wang HC, Zhang JP, Wu XL (2017) Electrochemical in situ formation of a stable Ti-based skeleton for improved Li-storage properties: a case study of porous CoTiO3 nanofibers. Chem Eur J 23:8712–8718

    CAS  Article  Google Scholar 

  17. Liu H, Wu XN, Guo EY, Lu QF (2019a) Tailored synthesis of coral-like CoTiO3/Co3O4/TiO2 nanobelts with superior Lithium storage capability. Energy Technol 8:1900774

  18. Liu HD, Zhu ZY, Huang J, He X, Chen Y, Zhang R, Lin RQ, Li YJ, Yu S, Xing X, Yan QZ, Li XG, Frost M, An K, Feng J, Kostecki R, Xin HL, Ong S, Liu P (2019b) Elucidating the limit of Li insertion into the spinel Li4Ti5O12. ACS Mater Lett 1:96–102

    CAS  Article  Google Scholar 

  19. Ouyang CY, Zhong ZY, Lei MS (2007) Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel. Electrochem Commun 9:1107–1112

    CAS  Article  Google Scholar 

  20. Railey P, Song Y, Liu TY (2017) Metal organic frameworks with immobilized nanoparticles: synthesis and applications in photocatalytic hydrogen generation and energy storage. Mater Res Bull 96:385–394

    CAS  Article  Google Scholar 

  21. Sandhya C, John P, Gouri C (2014) Lithium titanate as anode material for lithium-ion cells: a review. Ionics 20:601–620

    CAS  Article  Google Scholar 

  22. Serife E, Stojanovska E, Simon B, Kilic A (2015) A review of nanofibrous structures in lithium ion batteries. J Power Sources 300:199–215

    Article  Google Scholar 

  23. Shi JM, Liu GZ, Weng W, Cai LT, Zhang Q, Wu JH, Xu XX, Yao XY (2020) Co3S4@Li7P3S11 hexagonal platelets as cathodes with superior interfacial contact for all-solid-state lithium batteries. ACS Appl Mater Interfaces 12:14079–14086

    CAS  Article  Google Scholar 

  24. Simon G, Goswami T (2011) Improving anodes for lithium ion batteries. Metall Mater Trans A 42:231–238

    CAS  Article  Google Scholar 

  25. Tian BB, Xiang HF, Zhang L, Wang HH (2012) Effect of Nb-doping on electrochemical stability of Li4Ti5O12 discharged to 0 V. J Solid State Electrochem 16:205–211

    CAS  Article  Google Scholar 

  26. Tojo T, Kawashiri S, Tsuda T, Kadowaki M, Inada R, Sakuraib Y (2019) Electrochemical performance of single Li4Ti5O12 particle for lithium ion battery anode. J Electroanal Chem 836:24–29

    CAS  Article  Google Scholar 

  27. Trong L, Thao T, Dinh N (2015) Characterization of the Li-ionic conductivity of La(2/3−x)Li3xTiO3 ceramics used for all-solid-state batteries. Solid State Ionics 278:228–232

    CAS  Article  Google Scholar 

  28. Wang L, Xiao QZ, Li ZH, Lei GT, Wu LJ, Zhang P, Mao J (2012) Synthesis of Li2CoTi3O8 fibers and their application to lithium-ion batteries. Electrochim Acta 77:77–82

    CAS  Article  Google Scholar 

  29. Wang J, Zhao HL, Shen YN, Du ZH, Chen XM, Xia Q (2013) Structure, stoichiometry, and electrochemical performance of Li2CoTi3O8 as an anode material for lithium-ion batteries. Chempluschem 78:1530–1535

    CAS  Article  Google Scholar 

  30. Wang J, Shen LF, Li HS, Ding B, Nie P, Dou H, Zhang XG (2014) Mesoporous Li4Ti5O12/carbon nanofibers for high-rate lithium-ion batteries. J Alloys Compd 587:171–176

    CAS  Article  Google Scholar 

  31. Wang ZY, Xiong FY, Tao HZ, Yue YZ (2020) Revealing the role of the amorphous phase in Na0.74CoO2/C/N composite cathode. J Alloys Compd 815:152616

    CAS  Article  Google Scholar 

  32. Xu JQ, Thomas H, Francis R, Lum K, Wang JW, Liang B (2007) A review of processes and technologies for the recycling of lithium-ion secondary batteries. J Power Sources 177:512–527

    Article  Google Scholar 

  33. Xu HH, Sun YM, Luo W, Chen CJ, Liu Y, Huang YH (2014) Highly porous Li4Ti5O 12/C nanofibers for ultrafast electrochemical energy storage. Nano Energy 10:163–171

    CAS  Article  Google Scholar 

  34. Xu M, Han L, Han YJ, Yu Y, Zhai JF, Dong SJ (2015) Porous CoP concave polyhedron electrocatalysts synthesized from metal-organic frameworks with enhanced electrochemical properties for hydrogen evolution. J Mater Chem A 3:21471–21477

    CAS  Article  Google Scholar 

  35. Yi TF, Yang SY, Li XY, Yao JH, Zhu YR, Zhu RS (2014a) Sub-micrometric Li4−xNaxTi5O12 (0≤x≤0.2) spinel as anode material exhibiting high rate capability. J Power Sources 246:505–511

    CAS  Article  Google Scholar 

  36. Yi TF, Yang SY, Zhu YR, Ye M, Xie Y, Zhu RS (2014b) Enhanced rate performance of Li4Ti5O12 anode material by ethanol-assisted hydrothermal synthesis for lithium-ion battery. Ceram Int 40:9853–9858

    CAS  Article  Google Scholar 

  37. Yuan T, Yu X, Cai R, Zhou YK, Shao ZP (2010) Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance. J Power Sources 195:4997–5004

    CAS  Article  Google Scholar 

  38. Zeng LC, Qiu L, Cheng HM (2019) Towards the practical use of flexible lithium ion batteries. Energy Storage Mater 23:434–438

    Article  Google Scholar 

  39. Zhang QY, Lu HS, Zhong HX, Yan XD, Ouyang CY, Zhang LZ (2015) W6+ & Br codoped Li4Ti5O12 anode with super rate performances for Li-ion batteries. J Mater Chem A 3:13706–13716

    CAS  Article  Google Scholar 

  40. Zhang PC, Yuan T, Pang YP, Peng CX, Yang JH, Ma ZF, Zheng SY (2019) Influence of current density on graphite anode failure in lithium-ion batteries. J Electrochem Soc 166:A5489–A5495

    CAS  Article  Google Scholar 

  41. Zhao Z, Xu YL, Ji MD, Zhang H (2013) Synthesis and electrochemical performance of F doped Li4Ti5O12 for lithium-ion batteries. Electrochim Acta 109:645–650

    CAS  Article  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China (21571110), the NSF of Zhejiang province (LY18B010003), the NSF of Ningbo (2019A610002), the Foundation of State Key Laboratory of Structural Chemistry (FJIRSM, CAS, 20190028), and the K. C. Wong Magna Fund in Ningbo University.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Shuiping Huang or Xing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 3373 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Huang, S., Wang, C. et al. Li2CoTi3O8 and its composite nanofibers as high performance and long cycle lithium ion electrode materials. J Nanopart Res 22, 169 (2020). https://doi.org/10.1007/s11051-020-04908-5

Download citation

Keywords

  • Electrospinning
  • Composites
  • Anode materials
  • Lithium ion batteries
  • Nanomaterials
  • Energy storage