Mimicking the transit of nanoparticles through the body: when the path determines properties at the destination

Abstract

To test if the transit of a nanoparticle across different organs in the body affects its properties at the final destination, we devised an in vitro system that mimics the passage of nanoparticles from the blood to the lung to the brain and, occasionally, back to the blood. Each of the three media provided a unique corona to the nanoparticles, comprising mainly secreted, blood-specific proteins in the plasma and membrane proteins in the lung and the brain. The hard corona changed during the transit of the nanoparticle between different organs. Cellular uptake, antibacterial activity, and drug release kinetics were analyzed to assess the difference in the biological response to nanoparticles depending on the transit route. Drug release assays most consistently demonstrated the effects of the history of the nanoparticle passage across different media on its present properties. Both the uptake analysis and antibacterial assays showed that the key proteins for these two processes in the brain replace their analogues from the lung, but are ineffective in replacing the blood plasma content from the nanoparticle surface. Notwithstanding that some routes can erase the history of the passage of the nanoparticle across different organs, the route traversed by it mostly affects the properties it displays at the destination. A nanoparticle sent to a circular journey through an array of media can have different properties upon its return to the point of origin. History is an essential determinant of the properties of nanoparticles in biological milieus, the memory of which is inscribed in the nanoparticle corona.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Akter M, Sikder MT, Rahman MM, Ullah AKMA, Hossain KFB, Banik S, Hosokawa T, Saito T, Kurasaki M (2017) A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res 9:1–16

    Google Scholar 

  2. Alyaudtin RN, Reichel A, Löbenberg R, Ramge P, Kreuter J, Begley DJ (2001) Interaction of poly(butylcyanoacrylate) nanoparticles with the blood-brain barrier in vivo and in vitro. J Drug Target 9:209–221

    CAS  Google Scholar 

  3. Anderson NL, Polanski M, Pieper R, Gatlin T, Tirumalai RS, Conrads TP, Veenstra TD, Adkins JN, Pounds JG, Fagan R, Lobley A (2004) The human plasma proteome: a nonredundant list developed by combination of four separate sources. Mol Cell Proteomics 3:311–326

    CAS  Google Scholar 

  4. Anselme K, Ploux L, Ponche A (2010) Cell/material interfaces: influence of surface chemistry and surface topography on cell adhesion. J Adhes Sci Technol 24:831–852

    CAS  Google Scholar 

  5. Barbero F, Russo L, Vitali M, Piella J, Salvo I, Borrajo ML, Busquets-Fité M, Grandori R, Bastús NG, Casals E, Puntes V (2017) Formation of the protein corona: the interface between nanoparticles and the immune system. Semin Immunol 34:52–60

    CAS  Google Scholar 

  6. Behzadi S, Serpooshan V, Sakhtianchi R, Muller B, Landfester K, Crespy D, Mahmoudi M (2014) Protein corona change the drug release profile of nanocarriers: the ‘overlooked’ factor at the nanobio interface. Colloids Surf B: Biointerfaces 123:143–149

    CAS  Google Scholar 

  7. Bissell MJ, Hines WC (2011) Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 17:320–329

    CAS  Google Scholar 

  8. Blaauboer ME, Boeijen FR, Emson CL, Turner SM, Zandieh-Doulabi B, Hanemaaijer R, Smit TH, Stoop R, Everts V (2014) Extracellular matrix proteins: a positive feedback loop in lung fibrosis? Matrix Biol 34:170–178

    CAS  Google Scholar 

  9. Bondar OV, Saifullina DV, Shakhmaeva II, Mavlyutova II, Abdullin TI (2012) Monitoring of the zeta potential of human cells upon reduction in their viability and interaction with polymers. Acta Nat 4:78–81

    CAS  Google Scholar 

  10. Calvani R, Picca A, Lo Monaco MR, Landi F, Bernabei R, Marzetti E (2018) Of microbes and minds: a narrative review on the second brain aging. Front Med (Lausanne) 5:53

    Google Scholar 

  11. Cifuentes-Rius A, de Puig H, Kah JCY, Borros S, Hamad-Schiffer K (2013) Optimizing the properties of the protein corona surrounding nanoparticles for tuning payload release. ACS Nano 7:10066–10074

    CAS  Google Scholar 

  12. Ciofu O, Tolker-Nielsen T, Jensen PØ, Wang H, Høiby N (2015) Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Adv Drug Deliv Rev 85:7–23

    CAS  Google Scholar 

  13. Dassler K, Roohi F, Lohrke J, Ide A, Remmele S, Hütter J, Pietsch H, Pison U, Schütz G (2012) Current limitations of molecular magnetic resonance imaging for tumors as evaluated with high-relaxivity CD105-specific iron oxide nanoparticles. Investig Radiol 47:383–391

    CAS  Google Scholar 

  14. Docter D, Westmeier D, Markiewicz M, Stolte S, Knauer SK, Stauber RH (2015) The nanoparticle biomolecule corona: lessons learned – challenge accepted? Chem Soc Rev 44:6094–6121

    CAS  Google Scholar 

  15. Dugourd D, Yang H, Elliott M, Siu R, Clement JJ, Straus SK, Hancock RE, Rubinchik E (2011) Antimicrobial properties of MX-2401, an expanded-spectrum lipopeptide active in the presence of lung surfactant. Antimicrob Agents Chemother 55:3720–3728

    CAS  Google Scholar 

  16. Dyer JR (1965) Applications of absorption spectroscopy of organic compounds. Prentice-Hall, Inc., Englewood Cliffs, pp. 8

  17. Editorial Note (2005) Less is more. New Sci 3:11

    Google Scholar 

  18. Eiro N, Gonzalez LO, Fraile M, Cid S, Schneider J, Vizoso FJ (2019) Breast cancer tumor stroma: cellular components, phenotypic heterogeneity, intercellular communication, prognostic implications and therapeutic opportunities. Cancers (Basel) 11:E664

    Google Scholar 

  19. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TM, Kim JO (2000) A mechanistic study of the antibacterial effect of Ag+ ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    CAS  Google Scholar 

  20. Freire E, Gomes FCA, Jotha-Mattos T, Moura Neto V, Filho FCS, Coelho-Sampaio T (2004) Sialic acid residues on astrocytes regulate neuritogenesis by controlling the assembly of laminin matrices. J Cell Sci 117:4067–4076

    CAS  Google Scholar 

  21. Gallud A, Bondarenko O, Feliu N, Kupferschmidt N, Atluri R, Garcia-Bennett A, Fadeel B (2017) Macrophage activation status determines the internalization of mesoporous silica particles of different sizes: exploring the role of different pattern recognition receptors. Biomaterials 121:28–40

    CAS  Google Scholar 

  22. Gebauer JS, Malissek M, Simon S, Knauer SK, Maskos M, Stauber RH, Peukert W, Treuel L (2012) Impact of the nanoparticle-protein corona on colloidal stability and protein structure. Langmuir 28:9673–9679

    CAS  Google Scholar 

  23. Gessner I, Mathur S (2018) Dual function nanoconjugates for biomedical imaging and targeted drug delivery. In: Uskoković V, Uskoković D (eds) Nanotechnologies for preventive and regenerative medicine. Elsevier, Oxford

    Google Scholar 

  24. Geyer PE, Kulak NA, Pichler G, Holdt LM, Teupser D, Mann M (2016) Plasma protein profiling to assess human health and disease. Cell Syst 2:185–195

    CAS  Google Scholar 

  25. Ghosh S, Wu VM, Pernal S, Uskoković V (2016) Self-setting calcium phosphate cements with tunable antibiotic release rates for advanced bone graft applications. ACS Appl Mater Interfaces 8:7691–7708

    CAS  Google Scholar 

  26. Göppert TM, Müller RH (2005) Adsorption kinetics of plasma proteins on solid lipid nanoparticles for drug targeting. Int J Pharm 302:172–186

    Google Scholar 

  27. Hagiya H, Hagioka S, Otsuka F (2013) Ineffectiveness of daptomycin in the treatment of septic pulmonary emboli and persistent bacteremia caused by methicillin-resistant Staphylococcus aureus. Intern Med 52:2577–1582

    Google Scholar 

  28. Hanada S, Freese C, Böse T, Unger RE, Kirkpatrick CJ (2019) Influence of silica nanoparticles, monocytes and macrophages on blood-brain characteristics. Biomed Environ Sci (manuscript submitted for publication, 2019)

  29. Hansen U, Thünemann AF (2015) Characterization of silver nanoparticles in cell culture medium containing fetal bovine serum. Langmuir 31:6842–6852

    CAS  Google Scholar 

  30. He X, Kuang Y, Li Y, Zhang H, Ma Y, Bai W, Zhang Z, Wu Z, Zhao Y, Chai Z (2012) Changing exposure media can reverse the cytotoxicity of ceria nanoparticles for Escherichia coli. Nanotoxicology 6:233–240

    CAS  Google Scholar 

  31. Jacques C, Lavaud M, Georges S, Tesfaye R, Baud'huin M, Lamoureux F, Ory B (2020) BET bromodomains’ functions in bone-related pathologies. Epigenomics 12:127–144

    CAS  Google Scholar 

  32. Jung SY, Lim SM, Albertorio F, Kim G, Gurau MC, Yang RD, Holden MA, Cremer PS (2003) The Vroman effect: a molecular level description of fibrinogen displacement. J Am Chem Soc 125:12782–12786

    CAS  Google Scholar 

  33. Khan MA, Wu VM, Ghosh S, Uskoković V (2016) Gene delivery using calcium phosphate nanoparticles: optimization of the transfection process and the effects of citrate and poly(L-lysine) as additives. J Colloid Interface Sci 471:48–58

    CAS  Google Scholar 

  34. Kim D, Lee B, Marshall BP, Thomopoulos S, Jun YS (2020) Pulsed electrical stimulation enhances body fluid transport for collagen biomineralization. ACS Appl Bio Mater 3:902–910

    CAS  Google Scholar 

  35. Konduru NV, Molina RM, Swami A, Damiani F, Pyrgiotakis G, Lin P, Andreozzi P, Donaghey TC, Demokritou P, Krol S, Kreyling W, Brain JD (2017) Protein corona: implications for nanoparticle interactions with pulmonary cells. Part Fibre Toxicol 14:42

    Google Scholar 

  36. Larsen MJ (1986) An investigation of the theoretical background for the stability of the calcium-phosphate salts and their mutual conversion in aqueous solutions. Arch Oral Biol 31:757–761

    CAS  Google Scholar 

  37. Levak M, Burić P, Dutour Sikirić M, Jurašin DD, Mikac N, Bačić N, Drexel R, Meier F, Jakšić Ž, Lyons DM (2017) Effect of protein corona on silver nanoparticle stabilization and ion release kinetics in artificial seawater. Environ Sci Technol 51:1259–1266

    CAS  Google Scholar 

  38. Li Y, Monteiro-Riviera NA (2016) Mechanisms of cell uptake, inflammatory potential and protein corona effects with gold nanoparticles. Nanomedicine 11:3185–3203

    CAS  Google Scholar 

  39. Liu R, Sun F, Zhang L, Zong W, Zhao X, Wang L, Wu R, Hao X (2009) Evaluation on the toxicity of nanoAg to bovine serum albumin. Sci Total Environ 407:4184–4188

    CAS  Google Scholar 

  40. Liu Z, Zhan X, Yang M, Yang Q, Xu X, Lan F, Wu Y, Gu Z (2016) A magnetic-dependent protein corona of tailor-made superparamagnetic iron oxides alters their biological behaviors. Nanoscale. 8:7544–7555

    CAS  Google Scholar 

  41. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A 105:14265–14270

    CAS  Google Scholar 

  42. Lundqvist M, Stigler J, Cedervall T, Berggard T, Flanagan MB, Lynch I, Elia G, Dawson K (2011) The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5:7503–7509

    CAS  Google Scholar 

  43. Maia AL, Cavalcante CH, Souza MG, Ferreira AC, Rubello D, Chondrogiannis S, Cardoso VN, Ramaldes GA, Barros AL, Soares DC (2016) Hydroxyapatite nanoparticles: preparation, characterization, and evaluation of their potential use in bone targeting: an animal study. Nucl Med Commun 37:775–782

    CAS  Google Scholar 

  44. Marquez A, Berger T, Feinie A, Husing N, Himly M, Duschl A, Diwald O (2017) Bovine serum albumin adsorption on TiO2 colloids: the effect of particle agglomeration and surface composition. Langmuir 33:2551–2558

    CAS  Google Scholar 

  45. Mastryukov V (2011) Remembering Stoicheff and his rule. Phys Today 64:10

    Google Scholar 

  46. McLuhan M (1964) Understanding media: the extensions of man. McGraw-Hill, New York

    Google Scholar 

  47. Megido L, Diez P, Fuentes M (2018) Nanoproteomics approaches in biomarker discovery. The critical role of protein corona on nanoparticles as drug carriers. In: Nanotechnologies for preventive and regenerative medicine, V. Uskoković and D. Uskoković (eds.), Elsevier, Oxford

  48. Miclaus T, Bochenkov VE, Ogaki R, Howard KA, Sutherland DS (2014) Spatial mapping and quantification of soft and hard protein coronas at silver nanocubes. Nano Lett 14:2086–2093

    CAS  Google Scholar 

  49. Miyake N, Sato T, Maki Y (2013) Effect of zeta potentials on bovine serum albumin adsorption to hydroxyapatite surfaces. Bull Tokyo Dent Coll 54:97–101

    CAS  Google Scholar 

  50. Monopoli MP, Aberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7:779–786

    CAS  Google Scholar 

  51. Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    CAS  Google Scholar 

  52. Nicoletti O, de la Pena F, Leary RK, Holland DJ, Ducati C, Midgley PA (2013) Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature 502:80–84

    CAS  Google Scholar 

  53. Nissar AA, Martowirogo A, Gilbert PM (2016) Targeting the stem cell niche with regenerative biomaterials. Curr Opinion Solid State Mater Sci 20:180–192

    CAS  Google Scholar 

  54. Obst K, Yealland G, Balzus B, Miceli E, Dimde M, Weise C, Eravci M, Bodmeier R, Haag R, Calderón M, Charbaji N, Hedtrich S (2017) Protein corona formation on colloidal polymeric nanoparticles and polymeric nanogels: impact on cellular uptake, toxicity, immunogenicity, and drug release properties. Biomacromolecules 18:1762–1771

    CAS  Google Scholar 

  55. Patil S, Sandberg A, Heckert E, Self W, Seal S (2007) Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 28:4600–4607

    CAS  Google Scholar 

  56. Paul C, Samdani AF, Betz RR, Fischer I, Neuhuber B (2009) Grafting of human bone marrow stromal cells into spinal cord injury: a comparison of delivery methods. Spine 34:328–334

    Google Scholar 

  57. Pennisi E (2005) Why do humans have so few genes? Science 309:80

    CAS  Google Scholar 

  58. Petri-Fink A, Steitz B, Finka A, Salaklang J, Hofmann H (2008) Effect of cell media on polymer coated superparamagnetic iron oxide nanoparticles (SPIONs): colloidal stability, cytotoxicity, and cellular uptake studies. Eur J Pharm Biopharm 68:129–137

    CAS  Google Scholar 

  59. Pitek AS, Wen AM, Shukla S, Steinmetz NF (2016a) The protein corona of plant virus nanoparticles influences their dispersion properties, cellular interactions, and in vivo fates. Small 12:1758–1769

    CAS  Google Scholar 

  60. Pitek AS, Jameson SA, Veliz FA, Shukla S, Steinmetz NF (2016b) Serum albumin ‘camouflage’ of plant virus based nanoparticles prevents their antibody recognition and enhances pharmacokinetics. Biomaterials 89:89–97

    CAS  Google Scholar 

  61. Ponomarenko EA, Poverennaya EV, Ilgisonis EV, Pyatninskiy MA, Kopylov AT, Zgoda VG, Lisitsa AV, Archakov AI (2016) The size of the human proteome: the width and depth. Int J Anal Chem 2016:7436849

    Google Scholar 

  62. Rial R, Tichnell B, Latimer B, Liu Z, Messina PV, Ruso JM (2018) Structural and kinetic visualization of the protein corona on bioceramic nanoparticles. Langmuir 34:2471–2480

    CAS  Google Scholar 

  63. Robe A, Pic E, Lassalle HP, Bezdetnaya L, Guillemin F, Marchal F (2008) Quantum dots in axillary lymph node mapping: biodistribution study in healthy mice. BMC Cancer 8:111

    Google Scholar 

  64. Rouslahti E (1996) Brain extracellular matrix. Glycobiology 6:489–492

    Google Scholar 

  65. Schwameis R, Erdogan-Yildirm Z, Manafi M, Zeitlinger MA, Strommer S, Sauermann R (2013) Effect of pulmonary surfactant on antimicrobial activity in vitro. Antimicrob Agents Chemother 57:5151–5154

    CAS  Google Scholar 

  66. Shaw CA, Mortimer GM, Deng ZJ, Carter ES, Connell SP, Miller MR, Duffin R, Newby DE, Hadoke PW, Minchin RF (2016) Protein corona formation in bronchoalveoral fluid enhances diesel exhaust nanoparticle uptake and pro-inflammatory responses in macrophages. Nanotoxicology 10:981–991

    CAS  Google Scholar 

  67. Sun Y, Chen Y, Ma X, Yuan Y, Liu C, Kohn J, Qian J (2016) Mitochondria-targeted hydroxyapatite nanoparticles for selective growth inhibition of lung cancer in vitro and in vivo. ACS Appl Mater Interfaces 8:25680–25690

    CAS  Google Scholar 

  68. Thomann JM, Voegel JC, Gramain P (1990) Kinetics of dissolution of calcium hydroxyapatite powder. III: pH and sample conditioning effects. Calcif Tissue Int 46:121–129

    CAS  Google Scholar 

  69. Uskoković V (2008) Isn’t self-assembly a misnomer? Multi-disciplinary arguments in favor of co-assembly. Adv Colloid Interf Sci 141:37–47

    Google Scholar 

  70. Uskoković V (2009) On the relational character of mind and nature. Res Cogitans: Journal of Philosophy 6:286–400

    Google Scholar 

  71. Uskoković V (2012) On holism and the contextual character of natural qualities. World Futur 68(6):406–429

    Google Scholar 

  72. Uskoković V (2015) Nanostructured platforms for the sustained and local delivery of antibiotics in the treatment of osteomyelitis. Crit Rev Ther Drug Carrier Syst 32:1–59

    Google Scholar 

  73. Uskoković V, Desai TA (2013) Phase composition control of calcium phosphate nanoparticles for tunable drug delivery kinetics and treatment of osteomyelitis. I. Preparation and drug release. J Biomed Mater Res A 101:1416–1426

    Google Scholar 

  74. Uskoković V, Drofenik M (2005) Synthesis of materials within reverse micelles. Surf Rev Lett 12(2):239–277

    Google Scholar 

  75. Uskoković V, Castiglione Z, Cubas P, Zhu L, Li W, Habelitz S (2010) Zeta-potential and particle size analysis of recombinant human amelogenins. J Dent Res 89:149–153

    Google Scholar 

  76. Uskoković V, Pernal S, Wu VM (2017) Earthicle: the design of a conceptually new type of particle. ACS Appl Mater Interfaces 9:1305–1321

    Google Scholar 

  77. Uskoković V, Tang S, Wu VM (2018a) On grounds of the memory effect in amorphous and crystalline apatite: kinetics of crystallization and biological response. ACS Appl Mater Interfaces 10:14491–14508

    Google Scholar 

  78. Uskoković V, Marković S, Veselinović L, Škapin S, Ignjatović N, Uskoković DP (2018b) Insights into the kinetics of thermally induced crystallization of amorphous calcium phosphate. Phys Chem Chem Phys 20:29221–29235

    Google Scholar 

  79. van’t Veen A, Mouton JW, Gommers D, Kluytmans JA, Dekkers P, Lachmann B (1995) Influence of pulmonary surfactant on in vitro bactericidal activities of amoxicillin, ceftazidime, and tobramycin. Antimicrob Agents Chemother 39:329–333

    Google Scholar 

  80. Vidic J, Haque F, Guigner JM, Vidy A, Chevalier C, Stankic S (2014) Effects of water and cell culture media on the physicochemical properties of ZnMgO nanoparticles and their toxicity toward mammalian cells. Langmuir 30:11366–11374

    CAS  Google Scholar 

  81. Wang H, Qian WJ, Chin MH, Petyuk VA, Barry RC, Liu T, Gritsenko MA, Mottaz HM, Moore RJ, Camp Ii DG, Khan AH, Smith DJ, Smith RD (2006) Characterization of the mouse brain proteome using global proteomic analysis complemented with cysteinyl-peptide enrichment. J Proteome Res 5:361–369

    CAS  Google Scholar 

  82. Whiteside SA, Razvi H, Dave S, Reid G, Burton JP (2015) The microbiome of the urinary tract - a role beyond infection. Nat Rev Urol 12:81–90

    Google Scholar 

  83. Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz, M., Savitski, M.M., Ziegler, E., Butzmann, L., Gessulat, S., Marx, H., Mathieson T, Lemeer S, Schnatbaum, K., Reimer, U., Wenschuh, H., Mollenhauer, M., Slotta-Huspenina, J., Boese, J.-H., Bantscheff, M., Gerstmair, A., Faerber, F., and Kuster, B (2014) Mass-spectrometry-based draft of the human proteome. Nature, 509:582–587

  84. Wilkinson LJ, White RJ, Chipman JK (2011) Silver and nanoparticles of silver in wound dressings: a review of efficacy and safety. J Wound Care 20:543–549

    CAS  Google Scholar 

  85. Wu VM, Mickens J, Uskoković V (2017) Bisphosphonate-functionalized calcium phosphate nanoparticles for the delivery of the bromodomain inhibitor JQ1 in the treatment of osteosarcoma. ACS Appl Mater Interfaces 9:25887–25904

    CAS  Google Scholar 

  86. Wu VM, Tang S, Uskoković V (2018) Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: the antibacterial effect. ACS Appl Mater Interfaces 10(40):34013–34028

    CAS  Google Scholar 

  87. Zhdanov VP, Cho NJ (2016) Kinetics of the formation of a protein corona around nanoparticles. Math Biosci 282:82–90

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Sean Tang from the Uskoković Lab at Chapman University for assistance with the bacterial assays and Toshihiro Aoki from the Materials Research Institute at University of California, Irvine for assistance with HR-TEM.

Funding

The authors acknowledge Chapman University and R00-DE021416 award from the National Institutes of Health for the funding support.

Author information

Affiliations

Authors

Contributions

As per the CRediT taxonomy, V. Uskoković – Conceptualization, Data curation, Formal analysis, Funding acquisition, Methodology, Resources, Supervision, Visualization, Writing – original draft, Writing – review and editing; E. Huynh –Investigation, Validation; V. M. Wu – Data curation, Formal analysis, Investigation, Methodology, Project administration, Supervision, Validation, Visualization, Writing – original draft.

Corresponding author

Correspondence to Vuk Uskoković.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Uskoković, V., Huynh, E. & Wu, V.M. Mimicking the transit of nanoparticles through the body: when the path determines properties at the destination. J Nanopart Res 22, 184 (2020). https://doi.org/10.1007/s11051-020-04892-w

Download citation

Keywords

  • Antibacterial
  • Blood
  • Brain
  • Calcium phosphate
  • Corona
  • Drug release
  • Hydroxyapatite
  • Lung
  • Uptake