Cytotoxic effect of thermosensitive magnetoliposomes loaded with gemcitabine and paclitaxel on human primary breast cancer cells (MGSO-3 line)

Abstract

Magnetic hyperthermia therapy may be combined with controlled release of multiple chemotherapeutic agents to effectively treat cancerous tumors. This study describes the preparation and characteristics of gemcitabine- and paclitaxel-loaded magnetoliposomes to investigate the in vitro potential of this formulation in association with magnetic hyperthermia therapy to control drug delivery. Magnetic nanoparticles, gemcitabine, and paclitaxel were encapsulated into thermosensitive liposomes with efficiency of 84%, 57%, and 68%, respectively. The hydrodynamics and distribution of the magnetoliposome formulations were determined, showing ideal characteristics for accumulation in the tumor tissue: mean size less than 100 nm, polydispersity index < 0.2, and stability in aqueous suspension for at least 15 days. At physiological temperature, only 9% of the gemcitabine and 1% of the paclitaxel were released after 72 h, but the formulations exposed to an alternating magnetic field (AMF) dissipated energy sufficient to increase mean temperature to 43 °C in just 5 min and delivered 94% of the gemcitabine and 43% of the paclitaxel after 30 min. In vitro cytotoxicity and magnetic hyperthermia studies were then carried out using human primary breast cancer cells (MGSO-3) and MTT assay. The viability of cells exposed to the loaded magnetoliposomes and AMF for 30 min fell to 27%; the cells treated with the loaded magnetoliposomes but not exposed to AMF exhibited viability over 60%, while hyperthermia alone (with unloaded magnetoliposomes) reduced cell viability to 50%. This study consequently suggests that gemcitabine- and paclitaxel-loaded magnetoliposomes may present potential for combined treatments involving hyperthermia and controlled release of chemotherapeutic drugs.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Albain KS, Nag S, Calderillo-Ruiz G, Jordaan JP, Llombart A, Pluzanska A et al (2004) Global phase III study of gemcitabine plus paclitaxel (GT) vs. paclitaxel (T) as frontline therapy for metastatic breast cancer (MBC): first report of overall survival. J Clin Oncol 22(14):5S–5S

    Google Scholar 

  2. Albain KS, Nag SM, Calderillo-Ruiz G, Jordaan JP, Llombart AC, Pluzanska A, Rolski J, Melemed AS, Reyes-Vidal JM, Sekhon JS, Simms L, O'Shaughnessy J (2008) Gemcitabine plus paclitaxel versus paclitaxel monotherapy in patients with metastatic breast cancer and prior anthracycline treatment. J Clin Oncol 26(24):3950–3957. https://doi.org/10.1200/jco.2007.11.9362

    Article  Google Scholar 

  3. Alves AF, Mendo SG, Ferreira LP, Mendonca MH, Ferreira P, Godinho M et al (2016) Gelatine-assisted synthesis of magnetite nanoparticles for magnetic hyperthermia. J Nanopart Res 18(1). https://doi.org/10.1007/s11051-016-3327-z

  4. Amstad E, Reimhult E (2012) Nanoparticle actuated hollow drug delivery vehicles. Nanomedicine 7(1):145–164. https://doi.org/10.2217/nnm.11.167

    CAS  Article  Google Scholar 

  5. Bixner O, Reimhult E (2016) Controlled magnetosomes: embedding of magnetic nanoparticles into membranes of monodisperse lipid vesicles (article). J Colloid Interface Sci 466:62–71. https://doi.org/10.1016/j.jcis.2015.11.071

    CAS  Article  Google Scholar 

  6. Bozzuto G, Molinari A (2015) Liposomes as nanomedical devices. Int J Nanomedicine 10:975–999. https://doi.org/10.2147/ijn.s68861

    CAS  Article  Google Scholar 

  7. Brusa P, Immordino ML, Rocco F, Cattel L (2007) Antitumor activity and pharmacokinetics of liposomes containing lipophilic gemcitabine prodrugs (article). Anticancer Res 27(1A):195–199

    CAS  Google Scholar 

  8. Coral DF, Zelis PM, Marciello M, Morales MD, Craievich A, Sanchez FH et al (2016) Effect of nanoclustering and dipolar interactions in heat generation for magnetic hyperthermia. Langmuir 32(5):1201–1213. https://doi.org/10.1021/acs.langmuir.5b03559

    CAS  Article  Google Scholar 

  9. Correa CR, Bertollo CM, Goes AM (2009) Establishment and characterization of MACL-1 and MGSO-3 cell lines derived from human primary breast cancer. Oncol Res 17(10):473–482

    CAS  Article  Google Scholar 

  10. Cosco D, Bulotta A, Ventura M, Celia C, Calimeri T, Perri G, Paolino D, Costa N, Neri P, Tagliaferri P, Tassone P, Fresta M (2009) In vivo activity of gemcitabine-loaded PEGylated small unilamellar liposomes against pancreatic cancer. Cancer Chemother Pharmacol 64(5):1009–1020. https://doi.org/10.1007/s00280-009-0957-1

    CAS  Article  Google Scholar 

  11. Cosco D, Paolino D, Cilurzo F, Casale F, Fresta M (2012) Gemcitabine and tamoxifen-loaded liposomes as multidrug carriers for the treatment of breast cancer diseases (article). Int J Pharm 422(1–2):229–237. https://doi.org/10.1016/j.ijpharm.2011.10.056

    CAS  Article  Google Scholar 

  12. Dou YN, Weersink RA, Foltz WD, Zheng JZ, Chaudary N, Jaffray DA et al (2015) Custom-designed laser-based heating apparatus for triggered release of cisplatin from thermosensitive liposomes with magnetic resonance image guidance. J Vis Exp (106). https://doi.org/10.3791/53055

  13. Earl HM, Vallier A, Hiller L, Fenwick N, Iddawela M, Hughes-Davies L et al (2009) Neo-tAnGo: a neoadjuvant randomized phase III trial of epirubicin/cyclophosphamide and paclitaxel +/− gemcitabine in the treatment of women with high-risk early breast cancer (EBC): first report of the primary endpoint, pathological complete response (pCR). J Clin Oncol 27(15)

  14. Ferreira RV, Pereira ILS, Cavalcante LCD, Gamarra LF, Carneiro SM, Amaro E et al (2010) Synthesis and characterization of silica-coated nanoparticles of magnetite. Hyperfine Interact 195(1–3):265–274. https://doi.org/10.1007/s10751-009-0128-0

    CAS  Article  Google Scholar 

  15. Ferreira RV, Martins TMD, Goes AM, Fabris JD, Cavalcante LCD, Outon LEF et al (2016a) Thermosensitive gemcitabine-magnetoliposomes for combined hyperthermia and chemotherapy. Nanotechnology 27(8):085105. https://doi.org/10.1088/0957-4484/27/8/085105

    CAS  Article  Google Scholar 

  16. Ferreira RV, Silva-Caldeira PP, Pereira-Maia EC, Fabris JD, Cavalcante LCD, Ardisson JD, Domingues RZ (2016b) Bio-inactivation of human malignant cells through highly responsive diluted colloidal suspension of functionalized magnetic iron oxide nanoparticles. J Nanopart Res 18(4). https://doi.org/10.1007/s11051-016-3400-7

  17. Gertz F, Khitun A (2016) Biological cell manipulation by magnetic nanoparticles. AIP Adv 6(2). https://doi.org/10.1063/1.4942090

  18. Ghonchepour E, Yazdani E, Saberi D, Arefi M, Heydari A (2017) Preparation and characterization of copper chloride supported on citric acid-modified magnetite nanoparticles (Cu2+-CA@Fe3O4) and evaluation of its catalytic activity in the reduction of nitroarene compounds. Appl Organomet Chem 31(12). https://doi.org/10.1002/aoc.3822

  19. Guo YX, Zhang Y, Ma JY, Li Q, Li Y, Zhou XY et al (2018) Light/magnetic hyperthermia triggered drug released from multi-functional thermo-sensitive magnetoliposomes for precise cancer synergetic theranostics. J Control Release 272:145–158. https://doi.org/10.1016/j.jconrel.2017.04.028

    CAS  Article  Google Scholar 

  20. Hardiansyah A, Huang LY, Yang MC, Liu TY, Tsai SC, Yang CY, Kuo CY, Chan TY, Zou HM, Lian WN, Lin CH (2014) Magnetic liposomes for colorectal cancer cells therapy by high-frequency magnetic field treatment. Nanoscale Res Lett 9:497. https://doi.org/10.1186/1556-276x-9-497

    Article  Google Scholar 

  21. Immordino ML, Brusa P, Rocco F, Arpicco S, Ceruti M, Cattel L (2004) Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing lipophilic gemcitabine prodrugs (article). J Control Release 100(3):331–346. https://doi.org/10.1016/j.jconrel.2004.09.001

    CAS  Article  Google Scholar 

  22. Koudelka S, Turanek J (2012) Liposomal paclitaxel formulations (review). J Control Release 163(3):322–334. https://doi.org/10.1016/j.jconrel.2012.09.006

    CAS  Article  Google Scholar 

  23. Kulshrestha P, Gogoi M, Bahadur D, Banerjee R (2012) In vitro application of paclitaxel loaded magnetoliposomes for combined chemotherapy and hyperthermia. Colloids Surf B Biointerfaces 96:1–7. https://doi.org/10.1016/j.colsurfb.2012.02.029

    CAS  Article  Google Scholar 

  24. Kumari A, Singla R, Guliani A, Yadav SK (2014) Nanoencapsulation for drug delivery. EXCLI J 13:265–286

    Google Scholar 

  25. Laurent S, Dutz S, Hafeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interf Sci 166(1–2):8–23. https://doi.org/10.1016/j.cis.2011.04.003

    CAS  Article  Google Scholar 

  26. Li HB, Ke F, An YL, Hou XX, Zhang H, Lin M et al (2013) Gemcitabine-loaded magnetic albumin nanospheres for cancer chemohyperthermia. J Nanopart Res 15(3). https://doi.org/10.1007/s11051-013-1513-9

  27. Li MH, Teh C, Ang CY, Tan SY, Luo Z, Qu QY et al (2015) Near-infrared light-absorptive stealth liposomes for localized photothermal ablation of tumors combined with chemotherapy. Adv Funct Mater 25(35):5602–5610. https://doi.org/10.1002/adfm.201502469

    CAS  Article  Google Scholar 

  28. Maruyama K (2011) Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv Drug Deliv Rev 63(3):161–169. https://doi.org/10.1016/j.addr.2010.09.003

    CAS  Article  Google Scholar 

  29. Mu QX, Kievit FM, Kant RJ, Lin GY, Jeon M, Zhang MQ (2015) Anti-HER2/neu peptide-conjugated iron oxide nanoparticles for targeted delivery of paclitaxel to breast cancer cells. Nanoscale 7(43):18010–18014. https://doi.org/10.1039/c5nr04867b

    CAS  Article  Google Scholar 

  30. Nicolaou KC, Dai W-M, Guy RK (1994) Chemistry and biology of Taxol. Angew Chem Int Ed Engl 33(1):15–44. https://doi.org/10.1002/anie.199400151

    Article  Google Scholar 

  31. Ning SC, Macleod K, Abra RM, Huang AH, Hahn GM (1994) Hyperthermia induces doxorubicin release from long-circulating liposomes and enhances their anti-tumor efficacy. Int J Radiat Oncol Biol Phys 29(4):827–834

    CAS  Article  Google Scholar 

  32. Ozkaya T, Toprak MS, Baykal A, Kavas H, Köseoğlu Y, Aktaş B (2009) Synthesis of Fe3O4 nanoparticles at 100°C and its magnetic characterization. J Alloys Compd 472(1):18–23. https://doi.org/10.1016/j.jallcom.2008.04.101

    CAS  Article  Google Scholar 

  33. Peiris PM, Bauer L, Toy R, Tran E, Pansky J, Doolittle E, Schmidt E, Hayden E, Mayer A, Keri RA, Griswold MA, Karathanasis E (2012) Enhanced delivery of chemotherapy to tumors using a multicomponent nanochain with radio-frequency-tunable drug release. ACS Nano 6(5):4157–4168. https://doi.org/10.1021/nn300652p

    CAS  Article  Google Scholar 

  34. Ponce AM, Vujaskovic Z, Yuan F, Needham D, Dewhirst MW (2006) Hyperthermia mediated liposomal drug delivery. Int J Hyperth 22(3):205–213. https://doi.org/10.1080/02656730600582956

    CAS  Article  Google Scholar 

  35. Prasad NK, Rathinasamy K, Panda D, Bahadur D (2007) Mechanism of cell death induced by magnetic hyperthermia with nanoparticles of gamma-MnxFe2-xO3 synthesized by a single step process. J Mater Chem 17(48):5042–5051. https://doi.org/10.1039/b708156a

    CAS  Article  Google Scholar 

  36. Racuciu M, Creanga DE, Airinei A (2006) Citric-acid-coated magnetite nanoparticles for biological applications. Eur Phys J E Soft Matter 21(2):117–121. https://doi.org/10.1140/epje/i2006-10051-y

    CAS  Article  Google Scholar 

  37. Ren LL, Chen SZ, Li HD, Zhang ZY, Ye CH, Liu ML et al (2015) MRI-visible liposome nanovehicles for potential tumor-targeted delivery of multimodal therapies. Nanoscale 7(30):12843–12850. https://doi.org/10.1039/c5nr02144h

    CAS  Article  Google Scholar 

  38. Slavov L, Abrashev MV, Merodiiska T, Gelev C, Vandenberghe RE, Markova-Deneva I et al (2010) Raman spectroscopy investigation of magnetite nanoparticles in ferrofluids. J Magn Magn Mater 322(14):1904–1911. https://doi.org/10.1016/j.jmmm.2010.01.005

    CAS  Article  Google Scholar 

  39. Stapf M, Pompner N, Teichgraber U, Hilger I (2016) Heterogeneous response of different tumor cell lines to methotrexate-coupled nanoparticles in presence of hyperthermia. Int J Nanomedicine 11:485–500. https://doi.org/10.2147/ijn.s94384

    CAS  Article  Google Scholar 

  40. Stucki JW (1981) The quantitative assay of minerals for Fe2+ and Fe3+ using 1,10-phenanthroline. 2. A photochemical method. Soil Sci Soc Am J 45(3):638–641

    CAS  Article  Google Scholar 

  41. Stucki JW, Anderson WL (1981) The quantitative assay of minerals for Fe2+ and Fe3+ using 1,10-phenanthroline. 1. Sources of variability. Soil Sci Soc Am J 45(3):633–637

    CAS  Article  Google Scholar 

  42. Toby B (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34(2):210–213. https://doi.org/10.1107/S0021889801002242

    CAS  Article  Google Scholar 

  43. Young RA (1993) The Rietveld method. International Union of Crystallograhy ; Oxford University Press, Chester; Oxford; New York

    Google Scholar 

  44. Yu M, Guo F, Tan FP, Li N (2015) Dual-targeting nanocarrier system based on thermosensitive liposomes and gold nanorods for cancer thermo-chemotherapy. J Control Release 215:91–100. https://doi.org/10.1016/j.jconrel.2015.08.003

    CAS  Article  Google Scholar 

  45. Zhang JQ, Zhang ZR, Yang H, Tan QY, Qin SR, Qiu XL (2005) Lyophilized paclitaxel magnetoliposomes as a potential drug delivery system for breast carcinoma via parenteral administration: in vitro and in vivo studies (article). Pharm Res 22(4):573–583. https://doi.org/10.1007/s11095-005-2493-y

    CAS  Article  Google Scholar 

  46. Zhang Z, Mei L, Feng S-S (2013) Paclitaxel drug delivery systems. Expert Opin Drug Deliv 10(3):325–340. https://doi.org/10.1517/17425247.2013.752354

    CAS  Article  Google Scholar 

Download references

Funding

The Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG; grant process 25397) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) provided financial support (grant Rhae 472777/2014-9); R.F.L. Ribeiro received scholarship funding from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rita F. L. Ribeiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection: Role of Nanotechnology and Internet of Things in Healthcare, Guest Editors: Florian Heberle, Steve bull and John Fitzgerald

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, R.F.L., Ferreira, R.V., Pedersoli, D.C. et al. Cytotoxic effect of thermosensitive magnetoliposomes loaded with gemcitabine and paclitaxel on human primary breast cancer cells (MGSO-3 line). J Nanopart Res 22, 172 (2020). https://doi.org/10.1007/s11051-020-04833-7

Download citation

Keywords

  • Magnetoliposomes
  • Magnetic hyperthermia
  • Chemotherapy
  • MGSO-3 cells
  • Gemcitabine
  • Paclitaxel
  • Nanomedicine