2D g-C3N4/BiOBr heterojunctions with enhanced visible light photocatalytic activity

Abstract

The two-dimensional (2D) layered photocatalysts are promising to improve the separation efficiency of photogenerated electron-hole pairs. Herein, 2D graphitic carbon nitride (g-C3N4)/BiOBr heterojunctions were successfully prepared via a facile solvothermal method. The micromorphology, structure, and chemical composition/states were characterized. The visible light–induced photocatalytic properties were estimated by the degradation of rhodamine B (RhB), photocurrent responses, Nyquist spectra, and Mott-Schottky measurement. Comparing with pure g-C3N4 and BiOBr, 2D g-C3N4/BiOBr heterojunctions exhibit the enhanced visible light photodegradation. After coupling between (001) crystal planes of BiOBr with (002) planes of g-C3N4, 2D g-C3N4/BiOBr heterojunctions have the large and intimate contact surface allowing fast interfacial charge transfer rate. It is explored that photoinduced superoxide radicals (·O2) and holes (h+) actively participate in the photodegradation, while the contribution of hydroxyl (·OH) radicals is negligible.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271. https://doi.org/10.1126/science.1061051

    CAS  Article  Google Scholar 

  2. Cao S, Low J, Yu J, Jaroniec M (2015) Polymeric photocatalysts based on graphitic carbon nitride. Adv Mater 27:2150–2176. https://doi.org/10.1002/adma.201500033

    CAS  Article  Google Scholar 

  3. Chang C, Zhu L, Wang S, Chu X, Yue L (2014a) Novel mesoporous graphite carbon nitride/BiOI heterojunction for enhancing photocatalytic performance under visible-light irradiation. ACS Appl Mater Interfaces 6:5083–5093. https://doi.org/10.1021/am5002597

    CAS  Article  Google Scholar 

  4. Chang F et al. (2014b) Enhanced photocatalytic performance of g-C3N4 nanosheets-BiOBr hybrids. Superlattices Microstruct 76:90-104https://doi.org/10.1016/j.spmi.2014.10.002

  5. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570. https://doi.org/10.1021/cr1001645

    CAS  Article  Google Scholar 

  6. Chou S-Y, Chen C-C, Dai Y-M, Lin J-H, Lee WW (2016) Novel synthesis of bismuth oxyiodide/graphitic carbon nitride nanocomposites with enhanced visible-light photocatalytic activity. RSC Adv 6:33478–33491. https://doi.org/10.1039/c5ra28024a

    CAS  Article  Google Scholar 

  7. Di J et al (2013) A g-C3N4/BiOBr visible-light-driven composite: synthesis via a reactable ionic liquid and improved photocatalytic activity. RSC Adv 3:19624. https://doi.org/10.1039/c3ra42269k

    CAS  Article  Google Scholar 

  8. Di J et al (2014) One-pot solvothermal synthesis of Cu-modified BiOCl via a Cu-containing ionic liquid and its visible-light photocatalytic properties. RSC Adv 4:14281–14290. https://doi.org/10.1039/c3ra45670f

    CAS  Article  Google Scholar 

  9. Feng Y, Li L, Li J, Wang J, Liu L (2011) Synthesis of mesoporous BiOBr 3D microspheres and their photodecomposition for toluene. J Hazard Mater 192:538–544. https://doi.org/10.1016/j.jhazmat.2011.05.048

    CAS  Article  Google Scholar 

  10. Fu J, Tian Y, Chang B, Xi F, Dong X (2012) BiOBr-carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism. J Mater Chem 22:21159–21166. https://doi.org/10.1039/c2jm34778d

    CAS  Article  Google Scholar 

  11. Ge L, Han C, Liu J (2011) Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange. Appl Catal B Environ 108:100–107

    Article  Google Scholar 

  12. Guo W, Qin Q, Geng L, Wang D, Guo Y, Yang Y (2016) Morphology-controlled preparation and plasmon-enhanced photocatalytic activity of Pt-BiOBr heterostructures. J Hazard Mater 308:374–385. https://doi.org/10.1016/j.jhazmat.2016.01.077

    CAS  Article  Google Scholar 

  13. Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–7535

    CAS  Article  Google Scholar 

  14. Hou Y, Wen Z, Cui S, Guo X, Chen J (2013) Constructing 2D porous graphitic C3N4 nanosheets/nitrogen-doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical. Activity Adv Mater 25:6291–6297. https://doi.org/10.1002/adma.201303116

    CAS  Article  Google Scholar 

  15. Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann JM (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B-Environ 31:145–157. https://doi.org/10.1016/s0926-3373(00)00276-9

    CAS  Article  Google Scholar 

  16. Huang C, Hu J, Cong S, Zhao Z, Qiu X (2015) Hierarchical BiOCl microflowers with improved visible-light-driven photocatalytic activity by Fe (III) modification. Appl Catal B-Environ 174:105–112. https://doi.org/10.1016/j.apcatb.2015.03.001

    CAS  Article  Google Scholar 

  17. Huang H, Xiao K, Yu S, Dong F, Zhang T, Zhang Y (2016) Iodide surface decoration: a facile and efficacious approach to modulating the band energy level of semiconductors for high-performance visible-light photocatalysis. Chem Commun 52:354–357. https://doi.org/10.1039/c5cc08239k

    CAS  Article  Google Scholar 

  18. Jie F, Tian Y, Chang B, Xi F, Dong X (2012) BiOBr-carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism. J Mater Chem 22:21159–21166

    Article  Google Scholar 

  19. Kong L, Jiang Z, Xiao T, Lu L, Jones MO, Edwards PP (2011) Exceptional visible-light-driven photocatalytic activity over BiOBr-ZnFe2O4 heterojunctions. Chem Commun 47:5512–5514. https://doi.org/10.1039/c1cc10446b

    CAS  Article  Google Scholar 

  20. Kong L, Jiang Z, Lai HH, Nicholls RJ, Xiao T, Jones MO, Edwards PP (2012) Unusual reactivity of visible-light-responsive AgBr-BiOBr heterojunction photocatalysts. J Catal 293:116–125. https://doi.org/10.1016/j.jcat.2012.06.011

    CAS  Article  Google Scholar 

  21. Kuo WS, Ho PH (2006) Solar photocatalytic decolorization of dyes in solution with TiO2 film. Dyes Pigments 71:212–217. https://doi.org/10.1016/j.dyepig.2005.07.003

    CAS  Article  Google Scholar 

  22. Lee YY, Jung HS, Kang YT (2017) A review: effect of nanostructures on photocatalytic CO2 conversion over metal oxides and compound semiconductors. J CO2 Util 20:163–177

    CAS  Article  Google Scholar 

  23. Li H, Liu J, Liang X, Hou W, Tao X (2014a) Enhanced visible light photocatalytic activity of bismuth oxybromide lamellas with decreasing lamella thicknesses. J Mater Chem A 2:8926–8932. https://doi.org/10.1039/c4ta00236a

    CAS  Article  Google Scholar 

  24. Li L, Ai L, Zhang C, Jiang J (2014b) Hierarchical {001}-faceted BiOBr microspheres as a novel biomimetic catalyst: dark catalysis towards colorimetric biosensing and pollutant degradation. Nanoscale 6:4627–4634. https://doi.org/10.1039/c3nr06533b

    CAS  Article  Google Scholar 

  25. Li XR, Dai Y, Ma YD, Han SH, Huang BB (2014c) Graphene/g-C3N4 bilayer: considerable band gap opening and effective band structure engineering. Phys Chem Chem Phys 16:4230–4235. https://doi.org/10.1039/c3cp54592j

    CAS  Article  Google Scholar 

  26. Li B, Huang L, Zhong M, Li Y, Wang Y, Li J, Wei Z (2016a) Direct vapor phase growth and optoelectronic application of large band offset SnS2/MoS2 vertical bilayer heterostructures with high lattice mismatch. Adv Electronic Mater 2:1600298

    Article  Google Scholar 

  27. Li H, Hu T, Du N, Zhang R, Liu J, Hou W (2016b) Wavelength-dependent differences in photocatalytic performance between BiOBr nanosheets with dominant exposed (001) and (010) facets. Appl Catal B-Environ 187:342–349. https://doi.org/10.1016/j.apcatb.2016.01.053

    CAS  Article  Google Scholar 

  28. Liu J, Zhang T, Wang Z, Dawson G, Chen W (2011) Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J Mater Chem 21:14398–14401

    CAS  Article  Google Scholar 

  29. Liu M, Qiu X, Miyauchi M, Hashimoto K (2013) Energy-level matching of Fe (III) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts. J Am Chem Soc 135:10064–10072. https://doi.org/10.1021/ja401541k

    CAS  Article  Google Scholar 

  30. Liu C et al (2017) Constructing Z-scheme charge separation in 2D layered porous BiOBr/graphitic C3N4 nanosheets nanojunction with enhanced photocatalytic activity. J Alloys Compd 723:1121–1131. https://doi.org/10.1016/j.jallcom.2017.07.003

    CAS  Article  Google Scholar 

  31. Low J, Cao S, Yu J, Wageh S (2014) Two-dimensional layered composite photocatalysts. Chem Commun 50:10768–10777. https://doi.org/10.1039/c4cc02553a

    CAS  Article  Google Scholar 

  32. Lv J, Dai K, Zhang J, Liu Q, Liang C, Zhu G (2017) Facile constructing novel 2D porous g-C3N4/BiOBr hybrid with enhanced visible-light-driven photocatalytic activity. Sep Purif Technol 178:6–17

    CAS  Article  Google Scholar 

  33. Niu P, Zhang L, Liu G, Cheng H-M (2012) Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater 22:4763–4770. https://doi.org/10.1002/adfm.201200922

    CAS  Article  Google Scholar 

  34. Ouyang SX et al (2012) Surface-alkalinization-induced enhancement of photocatalytic H-2 evolution over SrTiO3-based photocatalysts. J Am Chem Soc 134:1974–1977. https://doi.org/10.1021/ja210610h

    CAS  Article  Google Scholar 

  35. Qiu X, Miyauchi M, Yu H, Irie H, Hashimoto K (2010) Visible-light-driven Cu (II)-(Sr1-yNay)(Ti1-xMox)O-3 photocatalysts based on conduction band control and surface ion modification. J Am Chem Soc 132:15259–15267. https://doi.org/10.1021/ja105846n

    CAS  Article  Google Scholar 

  36. Su T, Shao Q, Qin Z, Guo Z, Wu Z (2018) Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal 8:2253–2276

    CAS  Article  Google Scholar 

  37. Tang L et al. (2016) Simulated solar driven catalytic degradation of psychiatric drug carbamazepine with binary BiVO4 heterostructures sensitized by graphene quantum dots. Appl Catal B: Environ 205:587-596 https://doi.org/10.1016/j.apcatb.2016.10.067

  38. Wang P, Huang B, Zhang X, Qin X, Jin H, Dai Y, Wang Z, Wei J, Zhan J, Wang S, Wang J, Whangbo MH (2009a) Highly efficient visible-light plasmonic photocatalyst Ag@AgBr. Chem-Eur J 15:1821–1824. https://doi.org/10.1002/chem.200802327

    CAS  Article  Google Scholar 

  39. Wang X et al (2009b) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76

    CAS  Article  Google Scholar 

  40. Wang X-j, Wang Q, Li F-T, Yang W-Y, Zhao Y, Hao Y-J, Liu S-J (2013) Novel BiOCl–C3N4 heterojunction photocatalysts: in situ preparation via an ionic-liquid-assisted solvent-thermal route and their visible-light photocatalytic activities. Chem Eng J 234:361–371. https://doi.org/10.1016/j.cej.2013.08.112

    CAS  Article  Google Scholar 

  41. Wang J-C, Yao H-C, Fan Z-Y, Zhang L, Wang J-S, Zang S-Q, Li Z-J (2016) Indirect Z-scheme BiOl/g-C3N4 photocatalysts with enhanced photoreduction CO2 activity under visible light irradiation. ACS Appl Mater Interfaces 8:3765–3775. https://doi.org/10.1021/acsami.5b09901

    CAS  Article  Google Scholar 

  42. Wang C-Y, Zhang X, Qiu H-B, Huang G-X, Yu H-Q (2017) Bi24O31Br10 nanosheets with controllable thickness for visible-light-driven catalytic degradation of tetracycline hydrochloride. Appl Catal B-Environ 205:615–623. https://doi.org/10.1016/j.apcatb.2017.01.015

    CAS  Article  Google Scholar 

  43. Wang Q, Wang W, Zhong LL, Liu DM, Cao XZ, Cui FY (2018) Oxygen vacancy-rich 2D/2D BiOCl-g-C3N4 ultrathin heterostructure nanosheets for enhanced visible-light-driven photocatalytic activity in environmental remediation. Appl Catal B-Environ 220:290–302. https://doi.org/10.1016/j.apcatb.2017.08.049

    CAS  Article  Google Scholar 

  44. Wu X, Ng YH, Wang L, Du Y, Dou SX, Amal R, Scott J (2017) Improving the photo-oxidative capability of BiOBr via crystal facet engineering. J Mater Chem A 5:8117–8124. https://doi.org/10.1039/c6ta10964k

    CAS  Article  Google Scholar 

  45. Wu J, Xie Y, Ling Y, Dong Y, Li J, Li S, Zhao J (2019) Synthesis of flower-like g-C3N4/BiOBr and enhancement of the activity for the degradation of bisphenol A under visible light irradiation. Front Chem 7:649

    CAS  Article  Google Scholar 

  46. Yan H, Yang H (2011) TiO2–g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation. J Alloys Compd 509:L26–L29

    CAS  Article  Google Scholar 

  47. Yan S, Lv S, Li Z, Zou Z (2010) Organic–inorganic composite photocatalyst of gC 3 N 4 and TaON with improved visible light photocatalytic activities. Dalton Trans 39:1488–1491

    CAS  Article  Google Scholar 

  48. Yang Z, Li J, Cheng F, Chen Z, Dong X (2015) BiOBr/protonated graphitic C3N4 heterojunctions: intimate interfaces by electrostatic interaction and enhanced photocatalytic activity. J Alloys Compd 634:215–222. https://doi.org/10.1016/j.jallcom.2015.02.103

    CAS  Article  Google Scholar 

  49. Yang L, Liang L, Wang L, Zhu J, Gao S, Xia X (2019) Accelerated photocatalytic oxidation of carbamazepine by a novel 3D hierarchical protonated g-C3N4/BiOBr heterojunction: performance and mechanism. Appl Surf Sci 473:527–539

    CAS  Article  Google Scholar 

  50. Ye L, Zan L, Tian L, Peng T, Zhang J (2011) The {001} facets-dependent high photoactivity of BiOCl nanosheets. Chem Commun 47:6951–6953

    CAS  Article  Google Scholar 

  51. Ye L, Liu J, Jiang Z, Peng T, Zan L (2013) Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Appl Catal B Environ 142-143:1–7. https://doi.org/10.1016/j.apcatb.2013.04.058

    CAS  Article  Google Scholar 

  52. Yu Y, Cao C, Liu H, Li P, Wei F, Jiang Y, Song W (2014) A Bi/BiOCl heterojunction photocatalyst with enhanced electron-hole separation and excellent visible light photodegrading activity. J Mater Chem A 2:1677–1681. https://doi.org/10.1039/c3ta14494a

    CAS  Article  Google Scholar 

  53. Yuan L, Yang M-Q, Xu Y-J (2014) Tuning the surface charge of graphene for self-assembly synthesis of a SnNb 2 O 6 nanosheet–graphene (2D–2D) nanocomposite with enhanced visible light photoactivity. Nanoscale 6:6335–6345

    CAS  Article  Google Scholar 

  54. Zhang G, Zhang J, Zhang M, Wang X (2012) Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J Mater Chem 22:8083–8091

    CAS  Article  Google Scholar 

  55. Zhang D, Li J, Wang Q, Wu Q (2013) High {001} facets dominated BiOBr lamellas: facile hydrolysis preparation and selective visible-light photocatalytic activity. J Mater Chem A 1:8622–8629. https://doi.org/10.1039/c3ta11390f

    CAS  Article  Google Scholar 

  56. Zhang H, Yang Y, Zhou Z, Zhao Y, Liu L (2014) Enhanced photocatalytic properties in BiOBr nanosheets with dominantly exposed (102) facets. J Phys Chem C 118:14662–14669. https://doi.org/10.1021/jp5035079

    CAS  Article  Google Scholar 

  57. Zong X, Yan H, Wu G, Ma G, Wen F, Wang L, Li C (2008) Enhancement of photocatalytic H-2 evolution on CdS by loading MOS2 as cocatalyst under visible light irradiation. J Am Chem Soc 130:7176−+. https://doi.org/10.1021/ja8007825

    CAS  Article  Google Scholar 

Download references

Funding

This research was funded by the National Natural Science Foundation of China (51303022) and the Shanghai Municipal Natural Science Foundation (12ZR1400400), the Fundamental Research Funds for the Central Universities (2232015D3-17, 15D110558), and Industry-University-Institute Project (Booster Plan) of Shanghai Municipal Education Commission (15cxy55).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yaping Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Huang, W., Zhao, Y. et al. 2D g-C3N4/BiOBr heterojunctions with enhanced visible light photocatalytic activity. J Nanopart Res 22, 13 (2020). https://doi.org/10.1007/s11051-019-4739-3

Download citation

Keywords

  • Semiconductors
  • Photocatalysis
  • g-C3N4
  • BiOBr
  • Visible light
  • 2D photocatalysts
  • Nanostructured catalysts