Core-shell structured carbon nanotubes/N-doped carbon layer nanocomposites for supercapacitor electrodes

Abstract

N-Doped carbon layer–coated carbon nanotube (N-C/CNT) nanocomposites with stable core-shell structures were synthesized using a one-pot hydrothermal reaction. After high-temperature carbonization and KOH activation, the resultant N-C/CNT materials used as supercapacitor electrodes show high specific capacitance, good rate capability, and long cycle stability. The specific capacitance exhibits a high value of 322.1 F g−1 at 1 A g−1, and still maintains 200.7 F g−1, 168.7 F g−1, and 120.0 F g−1 at 5 A g−1, 10 A g−1, and 20 A g−1, respectively. During the 10,000-cycle testing at 5 A g−1, the specific capacitance was kept stable. The high performance of the supercapacitor electrodes could be attributed to the synergistic effect of the high specific surface area with fine pore structure, high electronic conductivity, and mechanical strength of CNT support and pseudocapacitance provided by doping N atoms in the carbon layer.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alaş MÖ, Güngör A, Genç R, Erdem E (2019) Feeling the power: robust supercapacitors from nanostructured conductive polymers fostered with Mn2+ and carbon dots. Nanoscale 11:12804–12816

    Article  Google Scholar 

  2. An BG, Xu SF, Li LX, Tao J, Huang F, Geng X (2013) Carbon nanotubes coated with a nitrogen-doped carbon layer and its enhanced electrochemical capacitance. J Mater Chem A 1:7222–7228

    CAS  Article  Google Scholar 

  3. Borchardt L, Oschatza M, Kaskel S (2014) Tailoring porosity in carbon materials for supercapacitor applications. Mater Horiz 1:157–168

    CAS  Article  Google Scholar 

  4. Deng YF, Xie Y, Zou KX, Ji XL (2016) Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. J Mater Chem A 4:1144–1173

    CAS  Article  Google Scholar 

  5. Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura MT, Iijima S (2006) Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater 5:987–994

    CAS  Article  Google Scholar 

  6. Genc R, Alas MO, Harputlu E, Repp S, Kremer N, Castellano M, Colak SG, Ocakoglu K, Erdem E (2017) High-capacitance hybrid supercapacitor based on multi-colored fluorescent carbon-dots. Sci Rep 7:11222

    Article  Google Scholar 

  7. González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sust Energ Rev 58:1189–1206

    Article  Google Scholar 

  8. Han JW, Wei W, Zhang C, Tao Y, Lv W, Ling GW, Kang FY, Yang QH (2018) Engineering graphenes from the nano- to the macroscale for electrochemical energy storage. Electrochem Energy Rev 1:139–168

    CAS  Article  Google Scholar 

  9. Hu JT, Yang J, Duan YD, Liu CK, Tang HT, Lin LP, Lin Y, Chen HB, Pan F (2017) The synergistic effect achieved by combining different nitrogen-doped carbon shells for high performance capacitance. Chem Commun 53:857–860

    CAS  Article  Google Scholar 

  10. Jia DD, Yu X, Tan H, Li XQ, Han F, Li LL, Liu H (2017) Hierarchical porous carbon with ordered straightmicro-channels templated by continuous filamentglass fiber arrays for high performance supercapacitors. J Mater Chem A 5:1516–1526

    CAS  Article  Google Scholar 

  11. Kasap S, Kaya II, Reppc S, Erdem E (2019) Superbat: battery-like supercapacitor utilized by graphene foam and zinc oxide (ZnO) electrodes induced by structural defects. Nanoscale Adv 1:2586–2597

    CAS  Article  Google Scholar 

  12. Kruk M, Jaroniec M (2001) Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem Mater 13:3169–3183

    CAS  Article  Google Scholar 

  13. Liu L, Xu SD, Yu Q, Wang FY, Zhu HL, Zhang RL, Liu X (2016) The synergistic effect achieved by combiningdifferent nitrogen-doped carbon shells for high performance capacitance. Chem Commun 52:11693–11696

    CAS  Article  Google Scholar 

  14. Lu J, Chen ZW, Pan F, Cui Y, Amine K (2018) High-performance anode materials for rechargeable lithium-ion batteries. Electrochem Energy Rev 1:35–53

    CAS  Article  Google Scholar 

  15. Najib S, Erdem E (2019) Current progress achieved in novel materials for supercapacitor electrodes: mini review. Nanoscale Adv 1:2817–2827

    Article  Google Scholar 

  16. Niu CM, Sichel EK, Hoch R, Moy D, Tennent H (1997) High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett 11:1480–1482

    Article  Google Scholar 

  17. Pan ZY, Ren J, Guan GZ, Fang X, Wang BJ, Doo SG, Son IH, Huang XL, Peng HS (2016) Synthesizing nitrogen-doped core–sheath carbon nanotube films for flexible lithium ion batteries. Adv Energy Mater 6:1600271

    Article  Google Scholar 

  18. Peng C, Zhang SW, Jewell D, Chen GZ (2008) Carbon nanotube and conducting polymer compositesfor supercapacitors. Prog Nat Sci 18:777–788

    CAS  Article  Google Scholar 

  19. Repp S, Harputlu E, Gurgen S, Castellano M, Kremer N, Pompe N, Wörner J, Hoffmann A, Thomann R, Emen FM, Weber S, Ocakoglu K, Erdem E (2018) Synergetic effects of Fe3+ doped spinel Li4Ti5O12 nanoparticles on reduced graphene oxide for high surface electrode hybrid supercapacitors. Nanoscale 10:1877–1884

    CAS  Article  Google Scholar 

  20. Sevilla M, Fuertes AB (2009) The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47:2281–2289

    CAS  Article  Google Scholar 

  21. Tan SJ, Zeng XX, Ma Q, Wu XW, Guo YG (2018) Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries. Electrochem Energy Rev 1:113–138

    CAS  Article  Google Scholar 

  22. Wang JC, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22:23710–23725

    CAS  Article  Google Scholar 

  23. Wang J, Shen LF, Xu YL, Dou H, Zhang XG (2015) Lamellar-structured biomass-derived phosphorus- and nitrogen-co-doped porous carbon for high-performance supercapacitors. New J Chem 39:9497–9503

    CAS  Article  Google Scholar 

  24. Wang CL, Zhang FF, Wang XX, Huang G, Yuan DX, Yin DM, Cheng Y, Wang LM (2016) Preparation of a graphitic N-doped multi-walledcarbon nanotube composite for lithium–sulfurbatteries with long-life and high specific capacity. RSC Adv 6:76568–76574

    CAS  Article  Google Scholar 

  25. Xie C, Yang SH, Li BB, Wang HK, Shi JW, Li GD, Niu CM (2016a) C-doped mesoporous anatase TiO2 comprising 10 nm crystallites. J Colloid Interface Sci 476:1–8

    CAS  Article  Google Scholar 

  26. Xie C, Yang SH, Shi JW, Niu CM (2016b) Highly crystallized C-doped mesoporous anataseTiO2 with visible light photocatalytic activity. Catalysts 6:117–127

    Article  Google Scholar 

  27. Yao YY, Ma C, Wang JT, Qiao WM, Ling LC, Long DH (2015) Rational design of high-surface-area carbon nanotube/microporous carbon core-shell nanocomposites for supercapacitor electrodes. ACS Appl Mater Interfaces 7:4817–4825

    CAS  Article  Google Scholar 

  28. Yu MY, Xie BQ, Yang Y, Zhang Y, Chen Y, Yu WY, Zhang SS, Lu LH, Liu D (2017) Residual oxygen groups in nitrogen-doped graphene to enhance the capacitive performance. RSC Adv 7:15293–15301

    CAS  Article  Google Scholar 

  29. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    CAS  Article  Google Scholar 

  30. Zhao L, Fan LZ, Zhou MQ, Guan H, Qiao SY, Antonietti M, Titirici MM (2010) Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv Mater 22:5202–5206

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The SEM work was done at International Center for Dielectric Research (ICDR), Xi’an Jiaotong University, China. The authors also thank Ms. Yanzhu Dai for her help in using SEM.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shenghui Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 489 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, C., Yang, S., Xu, X. et al. Core-shell structured carbon nanotubes/N-doped carbon layer nanocomposites for supercapacitor electrodes. J Nanopart Res 22, 25 (2020). https://doi.org/10.1007/s11051-019-4734-8

Download citation

Keywords

  • Core-shell structure
  • Carbon nanotubes
  • Supercapacitor
  • Nitrogen doping
  • Nanomaterials