The electrochemical synthesis of CNTs/N-Cu2S composites as efficient electrocatalysts for water oxidation

Abstract

Oxygen evolution reaction (OER) catalysts are of central importance for electrocatalytic water oxidation and fuel generation, while it is still an urgent requirement to design and develop efficient OER catalysts with rapid kinetics and low overpotentials. Herein, we report an electrochemical deposition method to fabricate carbon nanotubes/N-doped cuprous sulfide (CNTs/N-Cu2S) composites using thiourea and a CuSO4 solution as the S and Cu sources, respectively. The advantages of this strategy include low cost, simple processing and the absence of templates or surfactants that can otherwise affect the electrochemical properties of the products. The N supplied by the thiourea can be used as a doping agent as a result of the in situ formation of small N-Cu2S particles, which can increase larger surface area and create more active sites to enhance OER catalytic activity, compared with that obtained with materials synthesized without adding the thiourea. The synergic interface of CNTs and N-Cu2S can improve conductivity and efficient chemical transfer in the composites electrodes by introducing CNTs. Under the optimal experimental conditions, the CNTs/N-Cu2S-5cyc composites present an excellent activity with the current density of 10 mA cm−2 at a low OER overpotential of 280 mV, the Tafel slope of 63 mV dec−1 and a strong electrochemical stability in 1.0 M KOH solution.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. An L, Zhou P, Yin J, Liu H, Chen F, Liu H, Du Y, Xi P (2015) Phase transformation fabrication of a Cu2S nanoplate as an efficient catalyst for water oxidation with glycine. Inorg Chem 54:3281–3289

    CAS  Google Scholar 

  2. Brimblecombe R, Koo A, Dismukes GC, Swiegers GF, Spiccia L (2010) Solar driven water oxidation by a bioinspired manganese molecular catalyst. J Am Chem Soc 132:2892–2894

    CAS  Google Scholar 

  3. Cai P, Huang J, Chen J, Wen Z (2017) Oxygen-containing amorphous cobalt sulfide porous nanocubes as high-activity electrocatalysts for the oxygen evolution reaction in an alkaline/neutral medium. Angew Chem Int Ed 129:4936–4939

    Google Scholar 

  4. Cao M, Hu C, Wang Y, Guo Y, Guo C, Wang E (2003) A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods. Chem Commun 15:1884-1885

  5. Chauhan M, Reddy KP, Gopinath CS, Deka S (2017) Copper cobalt sulfide nanosheets realizing a promising electrocatalytic oxygen evolution reaction. ACS Catal 7:5871–5879

    CAS  Google Scholar 

  6. Chen P, Xu K, Zhou T, Tong Y, Wu J, Cheng H, Lu X, Ding H, Wu C, Xie Y (2016) Strong-coupled cobalt borate nanosheets/graphene hybrid as electrocatalyst for water oxidation under both alkaline and neutral conditions. Angew Chem Int Ed 55:2488–2492

    CAS  Google Scholar 

  7. Dou S, Tao L, Huo J, Wang S, Dai L (2016) Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis. Energy Environ Sci 9:1320–1326

    CAS  Google Scholar 

  8. Fang Z, Wang C, Fan F, Hao S, Long L, Song Y, Qiang T (2013) Phase evolution of Cu-S system in ethylene glycol solution: the effect of anion and PVP on the transformation of thiourea. Chin J Chem 31:1015–1021

    CAS  Google Scholar 

  9. Guo Y, Tong Y, Chen P, Xu K, Zhao J, Lin Y, Chu W, Peng Z, Wu C, Xie Y (2015) Engineering the electronic state of a perovskite electrocatalyst for synergistically enhanced oxygen evolution reaction. Adv Mater 27:5989–5994

    CAS  Google Scholar 

  10. He L, Zhou D, Lin Y, Ge R, Hou X, Sun X, Zheng C (2018) Ultrarapid in situ synthesis of Cu2S nanosheet arrays on copper foam with room-temperature-active iodine plasma for efficient and cost-effective oxygen evolution. ACS Catal 8:3859–3864

    CAS  Google Scholar 

  11. Hsieh C-T, Chen J-M, Lin H-H, Shih H-C (2003) Field emission from various CuO nanostructures. Appl Phys Lett 83:3383–3385

    CAS  Google Scholar 

  12. Kanan MW, Surendranath Y, Nocera DG (2009) Cobalt–phosphate oxygen-evolving compound. Chem Soc Rev 38:109–114

    CAS  Google Scholar 

  13. Ku G, Zhou M, Song S, Huang Q, Hazle J, Li C (2013) Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm. ACS Nano 6:7489

    Google Scholar 

  14. Lee H, Yoon SW, Kim EJ, Park J (2007) In-situ growth of copper sulfide nanocrystals on multiwalled carbon nanotubes and their application as novel solar cell and amperometric glucose sensor materials. Nano Lett 7:778–784

    CAS  Google Scholar 

  15. Li J, Yan M, Zhou X, Huang ZQ, Xia Z, Chang CR, Ma Y, Qu Y (2016) Mechanistic insights on ternary Ni2−xCoxP for hydrogen evolution and their hybrids with graphene as highly efficient and robust catalysts for overall water splitting. Adv Funct Mater 26:6785–6796

    CAS  Google Scholar 

  16. Li Q, Wang X, Tang K, Wang M, Wang C, Yan C (2017) Electronic modulation of electrocatalytically active center of Cu7S4 nanodisks by cobalt-doping for highly efficient oxygen evolution reaction. ACS Nano 11:12230–12239

    CAS  Google Scholar 

  17. Li H, Wang K, Cheng S, Jiang K (2018) Controllable electrochemical synthesis of copper sulfides as sodium-ion battery anodes with superior rate capability and ultralong cycle life. ACS Appl Mater Interfaces 10:8016–8025

    CAS  Google Scholar 

  18. Liang H, Shuang W, Zhang Y, Chao S, Han H, Wang X, Zhang H, Yang L (2018) Graphene-like multilayered CuS nanosheets assembled into flower-like microspheres and their electrocatalytic oxygen evolution properties. ChemElectroChem 5:494–500

    CAS  Google Scholar 

  19. Liu Y, Xiao C, Lyu M, Lin Y, Cai W, Huang P, Tong W, Zou Y, Xie Y (2015) Ultrathin Co3S4 nanosheets that synergistically engineer spin states and exposed polyhedra that promote water oxidation under neutral conditions. Angew Chem Int Ed 127:11383–11387

    Google Scholar 

  20. Morales J, Espinos J, Caballero A, Gonzalez-Elipe A, Mejias JA (2005) XPS study of interface and ligand effects in supported Cu2O and CuO nanometric particles. J Phys Chem B 109:7758–7765

    CAS  Google Scholar 

  21. Nakagawa T, Bjorge NS, Murray RW (2009) Electrogenerated IrOx nanoparticles as dissolved redox catalysts for water oxidation. J Am Chem Soc 131:15578–15579

    CAS  Google Scholar 

  22. Nocera DG (2012) The artificial leaf. Chem Res 45:767–776

    CAS  Google Scholar 

  23. Over H (2012) Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: from fundamental to applied research. Chem Rev 112:3356–3426

    CAS  Google Scholar 

  24. Park JC, Kim J, Kwon H, Song H (2009) Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv Mater 21:803–807

    CAS  Google Scholar 

  25. Schneider S, Ireland JR, Hersam MC, Marks TJ (2007) Copper (I) tert-butylthiolato clusters as single-source precursors for high-quality chalcocite thin films: film growth and microstructure control. Chem Mater 19:2780–2785

    CAS  Google Scholar 

  26. Shen J, Yang Z, Ge M, Li P, Nie H, Cai Q, Gu C, Yang K, Huang S (2016) Neuron-inspired interpenetrative network composed of cobalt–phosphorus-derived nanoparticles embedded within porous carbon nanotubes for efficient hydrogen production. ACS Appl Mater Interfaces 8:17284–17291

    CAS  Google Scholar 

  27. Subbaraman R, Tripkovic D, Chang K-C, Strmcnik D, Paulikas AP, Hirunsit P, Chan M, Greeley J, Stamenkovic V, Markovic NM (2012) Trends in activity for the water electrolyser reactions on 3d M (Ni, co, Fe, Mn) hydr (oxy) oxide catalysts. Nat Mater 11:550

    CAS  Google Scholar 

  28. Suen N-T, Hung S-F, Quan Q, Zhang N, Xu Y-J, Chen HM (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46:337–365

    CAS  Google Scholar 

  29. Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383–1385

    CAS  Google Scholar 

  30. Tanveer M, Cao C, Ali Z, Aslam I, Idrees F, Khan WS, But FK, Tahir M, Mahmood N (2014) Template free synthesis of CuS nanosheet-based hierarchical microspheres: an efficient natural light driven photocatalyst. CrystEngComm 16:5290

    CAS  Google Scholar 

  31. Wang H, Xu J-Z, Zhu J-J, Chen H-Y (2002) Preparation of CuO nanoparticles by microwave irradiation. J Cryst Growth 244:88–94

    CAS  Google Scholar 

  32. Wang Y, Ai X, Miller D, Rice P, Topuria T, Krupp L, Kellock A, Song Q (2012) Two-phase microwave-assisted synthesis of Cu2S nanocrystals. CrystEngComm 14:7560

    CAS  Google Scholar 

  33. Wei C, Rao RR, Peng J, Huang B, Stephens I, Risch M, Shao-Horn Y (2019) Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv Mater 31:1806296

  34. Wu L, Li Q, Wu CH, Zhu H, Mendoza-Garcia A, Shen B, Guo J, Sun S (2015) Stable cobalt nanoparticles and their monolayer array as an efficient electrocatalyst for oxygen evolution reaction. J Am Chem Soc 137:7071–7074

    CAS  Google Scholar 

  35. Wu J-X, He C-T, Li G-R, Zhang J-P (2018) An inorganic-MOF-inorganic approach to ultrathin CuO decorated Cu–C hybrid nanorod arrays for an efficient oxygen evolution reaction. J Mater Chem A 6:19176–19181

    CAS  Google Scholar 

  36. Xie L, Zhang R, Cui L, Liu D, Hao S, Ma Y, Du G, Asiri AM, Sun X (2017) High-performance electrolytic oxygen evolution in neutral media catalyzed by a cobalt phosphate nanoarray. Angew Chem Int Ed 56:1064–1068

    CAS  Google Scholar 

  37. Xu H, Feng J-X, Tong Y-X, Li G-R (2016a) Cu2O-Cu hybrid foams as high-performance electrocatalysts for oxygen evolution reaction in alkaline media. Angew Chem Int Ed 7:986–991

    Google Scholar 

  38. Xu L, Jiang Q, Xiao Z, Li X, Huo J, Wang S, Dai L (2016b) Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew Chem Int Ed 55:5277–5281

    CAS  Google Scholar 

  39. Yang D, Gao L, Yang JH (2017a) Facile synthesis of ultrathin Ni(OH)2-Cu2S hexagonal nanosheets hybrid for oxygen evolution reaction. J. Power Sources 359:52–56

    CAS  Google Scholar 

  40. Yang J, Yang Z, Li LH, Cai Q, Nie H, Ge M, Chen X, Chen Y, Huang S (2017b) Highly efficient oxygen evolution from CoS2/CNT nanocomposites via a one-step electrochemical deposition and dissolution method. Nanoscale 9:6886–6894

    CAS  Google Scholar 

  41. Yu L, Zhou H, Sun J, Qin F, Yu F, Bao J, Yu Y, Chen S, Ren Z (2017) Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ Sci 10:1820–1827

    CAS  Google Scholar 

  42. Zhang G, Wang P, Lu W-T, Wang C-Y, Li Y-K, Ding C, Gu J, Zheng X-S, Cao F-F (2017) Co nanoparticles/co, N, S tri-doped graphene templated from in-situ-formed co, S co-doped g-C3N4 as an active bifunctional electrocatalyst for overall water splitting. Chem Mater 9:28566–28576

    CAS  Google Scholar 

  43. Zhang S, Sun Y, Liao F, Shen Y, Shi H, Shao M (2018) Co9S8-CuS-FeS trimetal sulfides for excellent oxygen evolution reaction electrocatalysis. Electrochim Acta 283:1695–1701

    CAS  Google Scholar 

  44. Zhao X, Li L, Zhang Y, Zhang H, Wang Y (2017) Uniquely confining Cu2S nanoparticles in graphitized carbon fibers for enhanced oxygen evolution reaction. Nanotechnology 28:345402

  45. Zhou X, Xia Z, Zhang Z, Ma Y, Qu Y (2014) One-step synthesis of multi-walled carbon nanotubes/ultra-thin Ni(OH)2 nanoplate composite as efficient catalysts for water oxidation. J Mater Chem A 2:11799–11806

    CAS  Google Scholar 

  46. Zhou X, Xia Z, Tian Z, Ma Y, Qu Y (2015) Ultrathin porous Co3O4 nanoplates as highly efficient oxygen evolution catalysts. J Mater Chem A 3:8107–8114

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Michael D. Judge, MSc, from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Funding

The work was supported in part by grants from National Natural Science Foundation of China (51972238, 21875166, 51741207, 21475096 and 51572197)and China postdoctoral science foundation (2017M622630), Natural Science Foundation of Zhejiang Province (LR18E020001), Science and Technology Project of Zhejiang Province (LGF18B050005).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xuemei Zhou or Huagui Nie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Electronic supplementary material

ESM 1

(DOCX 5440 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Zhou, X., Yang, Z. et al. The electrochemical synthesis of CNTs/N-Cu2S composites as efficient electrocatalysts for water oxidation. J Nanopart Res 22, 12 (2020). https://doi.org/10.1007/s11051-019-4729-5

Download citation

Keywords

  • Cuprous sulfide
  • Carbon materials
  • Composites
  • Electro-deposition
  • Oxygen evolution reaction
  • Nanostructured catalyst