Cellular uptake and cytotoxicity of unmodified Pr3+:LaF3 nanoparticles

Abstract

Pr3+:LaF3 (CPr = 1%) nanoparticles were characterized by means of transmission electron microscopy (TEM), X-ray diffraction, energy-dispersive spectroscopy, and optical spectroscopy. The obtained 14 nm Pr3+:LaF3 (CPr = 1%) crystalline hexagonal-structured nanoparticles contain Pr, La, and F only. The luminescent spectra emission bands corresponded to the emission bands of Pr3+ions. The Pr3+:LaF3 (CPr = 1%) nanoparticles effectively interact with A 549, LEС, and MDCK cells. By means of TEM, it was revealed that after 2 h of the nanoparticle exposure, A 549, MDCK, and LEС cells internalized the nanoparticles and 20–300 nm agglomerates of the nanoparticles packed into 200–500 nm vesicles were found into the cytoplasm. It seems that the internalization occurs via macropinocytosis. In A 549 cells, some vesicles were disrupted and the nanoparticles escaped the vesicles floating freely in the cytoplasm. Flow cytometry showed that all the cells effectively interact with nanoparticles. This interaction leads to cell granularity change. Specifically, A 549, MDCK, and LEС, and cells treated by nanoparticles have the values of size scattered signal 16 ± 2, 20 ± 3, and 39 ± 3%, respectively, comparing with the untreated cells. The Pr3+:LaF3 (CPr = 1%) nanoparticles were not found into the cellular organelles. The cytotoxicity of the Pr3+:LaF3 (CPr = 1%) nanoparticles is not significant at concentrations of 0.05, 0.1, 0.25, and 0.5 g/L.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig.3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Alakshin EM, Gazizulin RR, Klochkov AV, Korableva SL, Safin TR, Safiullin KR, Tagirov MS (2014) Annealing of PrF3 nanoparticles by microwave irradiation. Opt Spectrosc 116(5):721–723. https://doi.org/10.1134/S0030400X14050026

    CAS  Article  Google Scholar 

  2. Alakshin EM, Klochkov AV, Kondratyeva EI, Korableva SL, Kiiamov AG, Nuzhina DS, Kodjikian S (2016) Microwave-assisted hydrothermal synthesis and annealing of DyF3 nanoparticles. J Nanomater 2016:7148307. https://doi.org/10.1155/2016/7148307

    CAS  Article  Google Scholar 

  3. Bekah D, Cooper D, Kudinov K, Hill C, Seuntjens J, Bradforth S, Nadeau J (2016) Synthesis and characterization of biologically stable, doped LaF3 nanoparticles co-conjugated to PEG and photosensitizers. J Photochem Photobiol A Chem 329:26–34. https://doi.org/10.1016/j.jphotochem.2016.06.008

    CAS  Article  Google Scholar 

  4. Dong H, Du S, Zheng X, Lyu G, Sun L, Li L, Zhang P, Zhang C, Yan C (2015) Lanthanide nanoparticles: from design toward bioimaging and therapy. Chem Rev 115:10725–10815. https://doi.org/10.1021/acs.chemrev.5b00091

    CAS  Article  Google Scholar 

  5. Froehlich E, Roblegg E (2014) Mucus as barrier for drug delivery by nanoparticles. J Nanosci Nanotechnol 14(1):126–136. https://doi.org/10.1166/jnn.2014.9015

    CAS  Article  Google Scholar 

  6. Gnach A, Lipinski T, Bednarkiewicz A, Rybka J, Capobianco JA (2015) Upconverting nanoparticles: assessing the toxicity. Chem Soc Rev 44(6):1561–1584. https://doi.org/10.1039/c4cs00177j

    CAS  Article  Google Scholar 

  7. Irvine JD, Takahashi L, Lockhart K, Cheong J, Tolan JW, Selick HE, Grove JR (1999) MDCK (Madin–Darby canine kidney) cells: a tool for membrane permeability screening. J Pharm Sci 88(1):28–33. https://doi.org/10.1021/js9803205

    CAS  Article  Google Scholar 

  8. Jalil RA, Zhang Y (2008) Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals. Biomaterials 29:4122–4128. https://doi.org/10.1016/j.biomaterials.2008.07.012

    CAS  Article  Google Scholar 

  9. Jaque D, Vetrone F (2012) Luminescence nanothermometry. Nanoscale 4(15):4301–4326. https://doi.org/10.1039/c2nr30764b

    CAS  Article  Google Scholar 

  10. Kaczkan M, Boruc Z, Fetlinski B, Turczynski S, Malinowski M (2013) Temperature dependence of 3P0 Pr3+ fluorescence dynamics in Y4Al2O9 crystals. Appl Phys B Lasers Opt 113(2):277–283. https://doi.org/10.1007/s00340-013-5469-3

    CAS  Article  Google Scholar 

  11. Kamma I, Kommidi P, Reddy BR (2009) High temperature measurement using luminescence of Pr3+ doped YAG and Ho3+ doped CaF2. Phys Status Solidi C 6(S11):S187–S190. https://doi.org/10.1002/pssc.200881334

    Article  Google Scholar 

  12. Kuhn DA, Vanhecke D, Michen B, Blank F, Gehr P, Petri-Fink A, Rothen-Rutishauser B (2014) Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J Nanotechnol 5(1):1625–1636. https://doi.org/10.3762/bjnano.5.174

    CAS  Article  Google Scholar 

  13. Ladol J., Khajuria H, Khajuria S, Sheikh HN (2016). Hydrothermal synthesis, characterization and luminescent properties of lanthanide-doped NaLaF4 nanoparticles. Bulletin of Materials Science. 39(4): 943-952

    CAS  Article  Google Scholar 

  14. Lellouche J, Friedman A, Gedanken A, Banin E (2012) Antibacterial and antibiofilm properties of yttrium fluoride nanoparticles. Int J Nanomedicine 7:5611. https://doi.org/10.2147/IJN.S37075

    CAS  Article  Google Scholar 

  15. Lim J, Yeap SP, Che HX, Low SC (2013) Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res Lett 8(1):381. https://doi.org/10.1186/1556-276X-8-381

    CAS  Article  Google Scholar 

  16. Ma L, Chen WX, Zheng YF, Zhao J, Xu Z (2007) Microwave-assisted hydrothermal synthesis and characterizations of PrF3 hollow nanoparticles. Mater Lett 61(13):2765–2768. https://doi.org/10.1016/j.matlet.2006.04.124

    CAS  Article  Google Scholar 

  17. Misfeldt DS, Hamamoto ST, Pitelka DR (1976) Transepithelial transport in cell culture. Proc Natl Acad Sci 73(4):1212–1216. https://doi.org/10.1073/pnas.73.4.1212

    CAS  Article  Google Scholar 

  18. Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Thompson M (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8(7):543. https://doi.org/10.1038/nmat2442,557

    CAS  Article  Google Scholar 

  19. Oh N, Park JH (2014) Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine 9(Suppl 1):51

    Google Scholar 

  20. Pudovkin MS, Koryakovtseva DA, Lukinova EV, Korableva SL, Khusnutdinova RS, Kiiamov AG, Nizamutdinov AS, Semashko VV (2019) Characterization of Pr-doped LaF3 nanoparticles synthesized by different variations of coprecipitation method. J Nanomater 2019:7549325. https://doi.org/10.1155/2019/7549325

    Article  Google Scholar 

  21. Pudovkin MS, Morozov OA, Pavlov VV, Korableva SL, Lukinova EV, Osin YN, Evtugyn VG, Safiullin RA, Semashko VV (2017) Physical background for luminescence thermometry sensors based on Pr3+:LaF3 crystalline particles. J Nanomater 2017:3108586. https://doi.org/10.1155/2017/3108586

    CAS  Article  Google Scholar 

  22. Pudovkin MS, Zelenikhin PV, Krasheninnikova AO, Korableva SL, Nizamutdinov AS, Alakshin EM, Semashko VV, Safiullin RA, Kadirov MK (2016) Photoinduced toxicity of PrF3 and LaF3 nanoparticles. Opt Spectrosc 121(4):538–543. https://doi.org/10.1134/S0030400X16100209

    CAS  Article  Google Scholar 

  23. Pudovkin MS, Zelenikhin PV, Shtyreva V, Morozov OA, Koryakovtseva DA, Pavlov VV et al (2018) Coprecipitation method of synthesis, characterization, and cytotoxicity of Pr3+: LaF3 (CPr = 3, 7, 12, 20, 30%) nanoparticles. J Nanotechnol 2018:8516498. https://doi.org/10.1155/2018/8516498

    CAS  Article  Google Scholar 

  24. Rai VK, Rai DK, Rai SB (2006) Pr3+ doped lithium tellurite glass as a temperature sensor. Sensors Actuators A Phys 128(1):14–17. https://doi.org/10.1016/j.sna.2005.12.030

    CAS  Article  Google Scholar 

  25. Rakhmatullin RM, Pudovkin MS, Semashko VV (2019) EPR evidence of surface paramagnetic defects formation due to annealing of LaF3 nanoparticles. Magnetic resonance in solids. Electron J 21:4. https://doi.org/10.26907/mrsej-19411

    Article  Google Scholar 

  26. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. The Journal of cell biology. 17(1): 208.

    CAS  Article  Google Scholar 

  27. Ribeiro AR, Gemini-Piperni S, Travassos R, Lemgruber L, Silva RC, Rossi AL et al (2016) Trojan-like internalization of anatase titanium dioxide nanoparticles by human osteoblast cells. Sci Rep 6:23615. https://doi.org/10.1038/srep23615

    CAS  Article  Google Scholar 

  28. Sahu D, Kannan GM, Tailang M, Vijayaraghavan R (2016) In vitro cytotoxicity of nanoparticles: a comparison between particle size and cell type. J Nanosci 2016:9. https://doi.org/10.1155/2016/4023852

    CAS  Article  Google Scholar 

  29. Semashko VV, Pudovkin MS, Cefalas AC, Zelenikhin PV, Gavriil VE, Nizamutdinov AS, Kollia Z, Ferraro A, Sarantopoulou E (2018) Tiny rare-earth fluoride nanoparticles activate tumour cell growth via electrical polar interactions. Nanoscale Res Lett 13(1):370. https://doi.org/10.1186/s11671-018-2775-z

    CAS  Article  Google Scholar 

  30. Shcherbakov AB, Zholobak NM, Baranchikov AE, Ryabova AV, Ivanov VK (2015) Cerium fluoride nanoparticles protect cells against oxidative stress. Mater Sci Eng C 50:151–159. https://doi.org/10.1016/j.msec.2015.01.094

    CAS  Article  Google Scholar 

  31. Stearns RC, Paulauskis JD, Godleski JJ (2001) Endocytosis of ultrafine particles by A549 cells. Am J Respir Cell Mol Biol. 24(2):108–115. https://doi.org/10.1165/ajrcmb.24.2.4081

    CAS  Article  Google Scholar 

  32. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle–cell interactions. Small 6(1):12–21. https://doi.org/10.1002/smll.200901158

    CAS  Article  Google Scholar 

  33. Wang K, Ma J, He M, Gao G, Xu H, Sang J, Cui D (2013) Toxicity assessments of near-infrared upconversion luminescent LaF3:Yb,Er in early development of zebrafish embryos. Theranostics 3(4):258. https://doi.org/10.7150/thno.5701

    CAS  Article  Google Scholar 

  34. Wysokińska E, Cichos J, Zioło E, Bednarkiewicz A, Strządała L, Karbowiak M, Hreniak D, Kałas W (2016) Cytotoxic interactions of bare and coated NaGdF4: Yb3+: Er3+ nanoparticles with macrophage and fibroblast cells. Toxicol in Vitro 32:16–25. https://doi.org/10.1016/j.tiv.2015.11.021

    CAS  Article  Google Scholar 

  35. Ximendes EC, Rocha U, Kumar KU, Jacinto C, Jaque D (2016) LaF3 core/shell nanoparticles for subcutaneous heating and thermal sensing in the second biological-window. Appl Phys Lett 108(25):253103. https://doi.org/10.1063/1.4954170

    CAS  Article  Google Scholar 

  36. Xing H, Bu W, Ren Q, Zheng X, Li M, Zhang S, Zhou L (2012) A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging. Biomaterials 33(21):5384–5393. https://doi.org/10.1016/j.biomaterials.2012.04.002

    CAS  Article  Google Scholar 

  37. Yang JM, Yang H, Lin L (2011) Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells. ACS Nano 5(6):5067–5071. https://doi.org/10.1021/nn201142f

    CAS  Article  Google Scholar 

  38. Zhou J, Yu M, Sun Y, Zhang X, Zhu X, Wu Z, Li F (2011) Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials 32(4):1148–1156. https://doi.org/10.1016/j.biomaterials.2010.09.071

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The biological experiments and TEM microscopy studies were funded by the subsidy allocated to the Kazan Federal University for the state assignment in the sphere of scientific activities [3.1156.2017/4.6] and [3.5835.2017/6.7]. Microscopy studies were carried out at the Interdisciplinary Center of Analytical Microscopy of the Kazan Federal University. The optical spectroscopy and XRD experiments were funded by the research grant of the Kazan Federal University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maksim S. Pudovkin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 97 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pudovkin, M.S., Zelenikhin, P.V., Shtyreva, V.V. et al. Cellular uptake and cytotoxicity of unmodified Pr3+:LaF3 nanoparticles. J Nanopart Res 21, 184 (2019). https://doi.org/10.1007/s11051-019-4628-9

Download citation

Keywords

  • Pr3+:LaF3 nanoparticles
  • Fluoride nanoparticles
  • Cytotoxicity
  • Cellular uptake
  • Flow cytometry
  • Macropinocytosis
  • Nanobiomedicine