Development of a growth model for aluminum-doped zinc oxide nanocrystal synthesis via the benzylamine route

Abstract

This work deals with time-resolved accessibility of suitable measurement technique to the solvothermal non-aqueous sol–gel synthesis of aluminum-doped zinc oxide (AZO) nanocrystals via the benzylamine route. Taking into account some limitations, we develop a new concept for using a lab-scale small-angle X-ray scattering (SAXS) camera to obtain detailed information about ongoing particle formation processes during AZO synthesis at the nanoscale range of 10 − 75 nm. Based on this concept, a new growth model is derived providing deep insights regarding process kinetics and morphological changes of AZO during growth. For this purpose, a new method is developed for carrying out and analyzing AZO synthesis in a low process temperature range (≪200 ° C) in order to achieve higher resolution of time-dependent particle formation processes by slowing down process speed. In detail, we show that the consumption of the zinc precursor during synthesis can be recorded by quantitative phase analysis (QPA) and thus validated with gravimetric analysis proving a pseudo-first-order process kinetics for the overall synthesis process. Taking into account the kinetics data, further transmission electron microscopy (TEM) and SAXS analyses are performed to investigate changes in terms of shape, size, and fractal properties leading into the development of a generalized growth model for AZO nanocrystals during synthesis.

.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Ashcroft NW, Lekner J (1966) Structure and resistivity of liquid metals. Phys Rev 145:83–90

    CAS  Article  Google Scholar 

  2. Beaucage G (1995) Approximations leading to a unified exponential/power-law approach to small-angle scattering. J Appl Crystallogr 28:717–728. https://doi.org/10.1107/S0021889895005292

    CAS  Article  Google Scholar 

  3. Boukari H, Lin JS, Harris MT (1997) Small-angle X-ray scattering study of the formation of colloidal silica particles from alkoxides: primary particles or not? J Colloid Interface Sci 194:311–318. https://doi.org/10.1006/jcis.1997.5112

    CAS  Article  Google Scholar 

  4. Cölfen H, Antonietti M (2005) Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chem Int Ed 44:5576–5591

    Article  Google Scholar 

  5. Cushing BL, Kolesnichenko VL, O'Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946. https://doi.org/10.1021/cr030027b

    CAS  Article  Google Scholar 

  6. Dalmaschio CJ, Leite ER (2012) Detachment induced by Rayleigh-instability in metal oxide nanorods: insights from TiO2. Cryst Growth Des 12:3668–3674. https://doi.org/10.1021/cg300473u

    CAS  Article  Google Scholar 

  7. Ellinger CR, Nelson SF (2014) Selective area spatial atomic layer deposition of ZnO, Al2O3, and aluminum-doped ZnO using poly (vinyl pyrrolidone). Chem Mater 26:1514–1522

    CAS  Article  Google Scholar 

  8. Garnweitner G, Grote C (2009) In situ investigation of molecular kinetics and particle formation of water-dispersible titania nanocrystals. Phys Chem Chem Phys 11:3767–3774

    CAS  Article  Google Scholar 

  9. Garnweitner G, Tsedev N, Dierke H, Niederberger M (2008) Benzylamines as versatile agents for the one-pot synthesis and highly ordered stacking of anatase nanoplatelets. Eur J Inorg Chem 2008:890–895

    Article  Google Scholar 

  10. Glatter O, Kratky O (eds) (1982) Small-angle X-ray scattering. Academic Press, New York

    Google Scholar 

  11. Goertz V, Gutsche A, Dingenouts N, Nirschl H (2012) Small-angle X-ray scattering study of the formation of colloidal SiO2 stober multiplets. J Phys Chem C 116:26938–26946

    CAS  Article  Google Scholar 

  12. Guo X, Gutsche A, Nirschl H (2013a) SWAXS investigations on diffuse boundary nanostructures of metallic nanoparticles synthesized by electrical discharges. J Nanopart Res 15:2058

    Article  Google Scholar 

  13. Guo X, Gutsche A, Wagner M, Seipenbusch M, Nirschl H (2013b) Simultaneous SWAXS study of metallic and oxide nanostructured particles. J Nanopart Res 15:1559. https://doi.org/10.1007/s11051-013-1559-8

    CAS  Article  Google Scholar 

  14. Gutsche A, Daikeler A, Guo X, Dingenouts N, Nirschl H (2014) Time-resolved SAXS characterization of the shell growth of silica-coated magnetite nanocomposites. J Nanopart Res 16:2475. https://doi.org/10.1007/s11051-014-2475-2

    CAS  Article  Google Scholar 

  15. Gutsche A, Meier M, Guo X, Ungerer J, Nirschl H (2017) Modification of a SAXS camera to study structures on multiple scales. J Nanopart Res 19:321

    Article  Google Scholar 

  16. Ismail B, Abaab M, Rezig B (2001) Structural and electrical properties of ZnO films prepared by screen printing technique. Thin Solid Films 383:92–94

    CAS  Article  Google Scholar 

  17. Jia B, Gao L (2008) Growth of well-defined cubic hematite single crystals: oriented aggregation and Ostwald ripening. Cryst Growth Des 8:1372–1376. https://doi.org/10.1021/cg070300t

    CAS  Article  Google Scholar 

  18. Jiang X, Wong FL, Fung MK, Lee ST (2003) Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices. Appl Phys Lett 83:1875–1877. https://doi.org/10.1063/1.1605805

    CAS  Article  Google Scholar 

  19. Karlak R, Burnett D (1966) Quantitative phase analysis by X-ray diffraction. Anal Chem 38:1741–1745

    CAS  Article  Google Scholar 

  20. Kelchtermans A, Elen K, Schellens K, Conings B, Damm H, Boyen HG, D'Haen J, Adriaensens P, Hardy A, van Bael MK (2013) Relation between synthesis conditions, dopant position and charge carriers in aluminium-doped ZnO nanoparticles. RSC Adv 3:15254–15262

    CAS  Article  Google Scholar 

  21. Livage J, Henry M, Sanchez C (1988) Sol-gel chemistry of transition metal oxides. Prog Solid State Chem 18:259–341

    CAS  Article  Google Scholar 

  22. Ludi B, Süess MJ, Werner IA, Niederberger M (2012) Mechanistic aspects of molecular formation and crystallization of zinc oxide nanoparticles in benzyl alcohol. Nanoscale 4:1982–1995

    CAS  Article  Google Scholar 

  23. Luo L, Rossell MD, Xie D, Erni R, Niederberger M (2012) Microwave-assisted nonaqueous sol–gel synthesis: from Al: ZnO nanoparticles to transparent conducting films. ACS Sustain Chem Eng 1:152–160

    Article  Google Scholar 

  24. Minami T (2005) Transparent conducting oxide semiconductors for transparent electrodes. Semicond Sci Technol 20:S35–S44

    CAS  Article  Google Scholar 

  25. Nie D, Xue T, Zhang Y, Li X (2008) Synthesis and structure analysis of aluminum doped zinc oxide powders. Sci China Ser B Chem 51:823–828

    CAS  Article  Google Scholar 

  26. Niederberger M (2007) Nonaqueous sol–gel routes to metal oxide nanoparticles. Acc Chem Res 40:793–800

    CAS  Article  Google Scholar 

  27. Niederberger M, Cölfen H (2006) Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys Chem Chem Phys 8:3271–3287

    CAS  Article  Google Scholar 

  28. Olliges-Stadler I, Rossell MD, Süess MJ, Ludi B, Bunk O, Pedersen JS, Birkedal H, Niederberger M (2013) A comprehensive study of the crystallization mechanism involved in the nonaqueous formation of tungstite. Nanoscale 5:8517–8525

    CAS  Article  Google Scholar 

  29. Özgür Ü et al (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:11

    Article  Google Scholar 

  30. Patil A, Dighavkar C, Borse R (2011) Al doped ZnO thick films as CO2 gas sensors. J Optoelectron Adv Mater 13:1331–1337

    CAS  Google Scholar 

  31. Penn RL, Soltis JA (2014) Characterizing crystal growth by oriented aggregation. CrystEngComm 16:1409–1418

    CAS  Article  Google Scholar 

  32. Pinna N, Niederberger M (2008) Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angew Chem Int Ed 47:5292–5304

    CAS  Article  Google Scholar 

  33. Pinna N, Garnweitner G, Antonietti M, Niederberger M (2005) A general nonaqueous route to binary metal oxide nanocrystals involving a C−C bond cleavage. J Am Chem Soc 127:5608–5612

    CAS  Article  Google Scholar 

  34. Porod G (1951) Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen. Kolloid-Zeitschrift 124:83–114

    CAS  Article  Google Scholar 

  35. Schmidt P (1991) Small-angle scattering studies of disordered, porous and fractal systems. J Appl Crystallogr 24:414–435. https://doi.org/10.1107/S0021889891003400

    CAS  Article  Google Scholar 

  36. Schnablegger H, Singh Y (2013) The SAXS guide. Anton Paar GmbH

  37. Singh MA, Ghosh SS, Shannon RF Jr (1993) A direct method of beam-height correction in small-angle X-ray scattering. J Appl Crystallogr 26:787–794. https://doi.org/10.1107/S0021889893005527

    CAS  Article  Google Scholar 

  38. Song RQ, Cölfen H (2010) Mesocrystals—ordered nanoparticle superstructures. Adv Mater 22:1301–1330

    CAS  Article  Google Scholar 

  39. Soofivand F, Tavakoli F, Salavati-Niasari M (2014) Synthesis and characterization of Zn(acac)2 one-dimensional nanostructures by novel method. Sumy State University

  40. Strachowski T, Grzanka E, Lojkowski W, Presz A, Godlewski M, Yatsunenko S, Matysiak H, Piticescu RR, Monty CJ (2007) Morphology and luminescence properties of zinc oxide nanopowders doped with aluminum ions obtained by hydrothermal and vapor condensation methods. J Appl Phys 102:073513

    Article  Google Scholar 

  41. Stubhan T, Oh H, Pinna L, Krantz J, Litzov I, Brabec CJ (2011) Inverted organic solar cells using a solution processed aluminum-doped zinc oxide buffer layer. Org Electron 12:1539–1543

    CAS  Article  Google Scholar 

  42. Virtanen A, Ristimäki J, Keskinen J (2004) Method for measuring effective density and fractal dimension of aerosol agglomerates. Aerosol Sci Technol 38:437–446

    CAS  Article  Google Scholar 

  43. Wang ZL (2004) Nanostructures of zinc oxide. Mater Today 7:26–33. https://doi.org/10.1016/S1369-7021(04)00286-X

    CAS  Article  Google Scholar 

  44. Yoon M, Lee S, Park H, Kim H, Jang M (2002) Solid solubility limits of Ga and Al in ZnO. J Mater Sci Lett 21:1703–1704

    CAS  Article  Google Scholar 

  45. Zellmer S, Kockmann A, Dosch I, Temel B, Garnweitner G (2015) Aluminum zinc oxide nanostructures with customized size and shape by non-aqueous synthesis. CrystEngComm 17:6878–6883. https://doi.org/10.1039/c5ce00629e

    CAS  Article  Google Scholar 

  46. Zhang Q, Liu S-J, Yu S-H (2009) Recent advances in oriented attachment growth and synthesis of functional materials: concept, evidence, mechanism, and future. J Mater Chem 19:191–207

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We express our immense thanks to Mr. Tim Köhler and Mr. Florian Kaiser for the experimental assistance and Mrs. Sabrina Zellmer for fruitful discussions.

Funding

The research leading to these results has received funding from the German Research Foundation (DFG Ni 414/24-1 and Ga 1492/9-1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Julian Ungerer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ungerer, J., Thurm, AK., Meier, M. et al. Development of a growth model for aluminum-doped zinc oxide nanocrystal synthesis via the benzylamine route. J Nanopart Res 21, 106 (2019). https://doi.org/10.1007/s11051-019-4547-9

Download citation

Keywords

  • AZO nanocrystals
  • The benzylamine route
  • Process kinetics
  • Particle morphology
  • Growth model of AZO
  • SAXS
  • Synthesis