Twisted carbonaceous nanoribbons as high-performance anode material for lithium-ion batteries

Abstract

The high demands on lithium-ion batteries (LIBs) have increased concern about novel carbon nanomaterials with high capacity and cycling stability. Herein, twisted carbonaceous nanoribbons with high BET specific surface area of 1413 m2 g−1 were successfully synthesized using twisted 4, 4′-biphenylene bridged polybissilsesquioxane tubular nanoribbons as the starting material. Electrochemical measurement showed that the carbonaceous nanoribbon electrode not only delivered a high specific capacity of 921.1 mAh g−1 after 250 cycles at a current density of 0.1 A g−1, but also exhibited superior cycling stability and excellent rating capability. The work presents a facile way to design and fabricate good anode candidate for LIBs.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abbas S, Ali S, Niaz N, Ali N, Ahmed R, Ahmad N (2014) Superior electrochemical performance of mesoporous Fe3O4/CNT nanocomposites as anode material for lithium ion batteries. J Alloys Compd 611:260–266

    CAS  Article  Google Scholar 

  2. Armand M, Tarascon J (2008) Building better batteries. Nature 451:652–657

    CAS  Article  Google Scholar 

  3. Bruce P, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47:2930–2946

    CAS  Article  Google Scholar 

  4. Chan C, Ruffo R, Hong S, Huggins R, Cui Y (2009) Structural and electrochemical study of the reaction of lithium with silicon nanowires. J Power Sources 189:34–39

    CAS  Article  Google Scholar 

  5. Cheng J, Wang B, Park CM, Wu Y, Huang H, Nie F (2013) CNT@Fe3O4@C coaxial nanocables: one-pot, additive-free synthesis and remarkable lithium storage behavior. Chem Eur J 19:9866–9874

    CAS  Article  Google Scholar 

  6. Chen LF, Huang ZH, Liang HW, Gao HL, Yu SH (2014) Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv Funct Mater 24:5104–5111

    CAS  Article  Google Scholar 

  7. Chen X, Yang S, Motojima S, Ichihara M (2005) Morphology and microstructure of twisting nano-ribbons prepared using sputter-coated Fe-base alloy catalysts on glass substrates. Mater Lett 59:854–858

    CAS  Article  Google Scholar 

  8. Chen Z, Cao Y, Qian J, Ai X, Yang H (2010) Antimony-coated SiC nanoparticles as stable and high-capacity anode materials for Li-ion batteries. J Phys Chem C 114:15196–15201

    CAS  Article  Google Scholar 

  9. Dahn J, Zheng T, Liu Y, Xue J (1995) Mechanisms for lithium insertion in carbonaceous materials. Science 270:590–593

    CAS  Article  Google Scholar 

  10. Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41:666–686

    CAS  Article  Google Scholar 

  11. Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276:1395–1397

    CAS  Article  Google Scholar 

  12. Jia S, Song T, Zhao B, Zhai Q, Gao Y (2014) Dealloyed Fe3O4 octahedra as anode material for lithium-ion batteries with stable and high electrochemical performance. J Alloys Compd 617:787–791

    CAS  Article  Google Scholar 

  13. Kim B, Uono H, Satou T, Fuse T, Ishihara T, Ue M, Senna M (2005) Cyclic properties of Si-cu/carbon nanocomposite anodes for Li-ion secondary batteries. J Electrochem Soc 152:A523–A526

    CAS  Article  Google Scholar 

  14. Laruelle S, Grugeon S, Poizot P, Dolle M, Dupont L, Tarascon J (2002) On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J Electrochem Soc 149:A627–A634

    CAS  Article  Google Scholar 

  15. Lee SH, Sridhar V, Jung JH, Karthikeyan K, Lee YS, Mukherjee R, Koratkar N, Oh IK (2013) Graphene-nanotube-iron hierarchical nanostructure as lithium ion battery anode. ACS Nano 7:4242–4251

    CAS  Article  Google Scholar 

  16. Li H, Li B, Chen Y, Zhang M, Wang S, Li Y, Yang Y (2009) Preparation of chiral 4,4 '-biphenylene-silica nanoribbons. Chin J Chem 27:1860–1862

    CAS  Article  Google Scholar 

  17. Liu H, Li Z, Liang Y, Fu R, Wu D (2015) Facile synthesis of MnO multi-core@nitrogen-doped carbon shell nanoparticles for high performance lithium-ion battery anodes. Carbon 84:419–425

    CAS  Article  Google Scholar 

  18. Liu J, Liu XW (2012) Two-dimensional nanoarchitectures for lithium storage. Adv Mater 24:4097–4111

    CAS  Article  Google Scholar 

  19. Liu S, Duan Y, Feng X, Yang J, Che S (2013) Synthesis of enantiopure carbonaceous nanotubes with optical activity. Angew Chem Int Ed 52:6858–6862

    CAS  Article  Google Scholar 

  20. Liu Y, Huang K, Luo H, Li H, Qi X, Zhong J (2014) Nitrogen-doped graphene-Fe3O4 architecture as anode material for improved Li-ion storage. RSC Adv 4:17653–17659

    CAS  Article  Google Scholar 

  21. Reddy M, Ryu S, Shanmugharaj A (2016) Synthesis of SnO2 pillared carbon using long chain alkylamine grafted graphene oxide: an efficient anode material for lithium ion batteries. Nanoscale 8:471–482

    CAS  Article  Google Scholar 

  22. Roberts A, Li X, Zhang H (2014) Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem Soc Rev 43:4341–4356

    CAS  Article  Google Scholar 

  23. Sato K, Noguchi M, Demachi A, Oki N, Endo M (1994) A mechanism of lithium storage in disordered carbons. Science 264:556–558

    CAS  Article  Google Scholar 

  24. Shao C, Zhang F, Li B, Li Y, Wu QH, Yang Y (2017) Helical mesoporous carbon nanoribbons as high performance lithium ion battery anode materials. J Taiwan Inst Chem Eng 80:434–438

    CAS  Article  Google Scholar 

  25. Sun H, Wang Q, Geng H, Li B, Li Y, Wu QH, Fan J, Yang Y (2016) Fabrication of chiral mesoporous carbonaceous nanofibers and their electrochemical energy storage. Electrochim Acta 213:752–760

    CAS  Article  Google Scholar 

  26. Suzuki M, Yumoto M, Kimura M, Shirai H, Hanabusa K (2004) New low-molecular-mass gelators based on L-lysine: amphiphilic gelators and water-soluble organogelators. Helv Chim Acta 87:1–10

    CAS  Article  Google Scholar 

  27. Wang C, Li Y, Ostrikov K, Yang Y, Zhang W (2015a) Synthesis of SiC decorated carbonaceous nanorods and its hierarchical composites Si@SiC@C for high-performance lithium ion batteries. J Alloys Compd 646:966–972

    CAS  Article  Google Scholar 

  28. Wang F, Song R, Song H, Chen X, Zhou J, Ma Z, Li M, Lei Q (2015b) Simple synthesis of novel hierarchical porous carbon microspheres and their application to rechargeable lithium-ion batteries. Carbon 81:314–321

    CAS  Article  Google Scholar 

  29. Wang HG, Wu Z, Meng FL, Ma DL, Huang XL, Wang LM, Zhang XB (2013a) Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. Chemsuschem 6:56–60

    CAS  Article  Google Scholar 

  30. Wang K, Li Z, Wang Y, Liu H, Chen J, Holmes J, Zhou H (2010) Carbon nanocages with nanographene shell for high-rate lithium ion batteries. J Mater Chem 20:9748–9753

    CAS  Article  Google Scholar 

  31. Wang Q, Chen H, Li B, Li Y, Yang Y (2014) Single-handed helical carbonaceous bundles prepared using a chiral polybissilsesquioxane. Mater Lett 128:279–283

    CAS  Article  Google Scholar 

  32. Wang SX, Yang L, Stubbs L, Li X, He C (2013b) Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries. ACS Appl Mater Interfaces 5:12275–12282

    CAS  Article  Google Scholar 

  33. Wang W, Sun Y, Liu B, Wang S, Cao M (2015c) Porous carbon nanofiber webs derived from bacterial cellulose as an anode for high performance lithium ion batteries. Carbon 91:56–65

    CAS  Article  Google Scholar 

  34. Wu X, Ji S, Li Y, Li B, Zhu X, Hanabusa K, Yang Y (2009a) Helical transfer through nonlocal interactions. J Am Chem Soc 131:5986–5993

    CAS  Article  Google Scholar 

  35. Wu Y, Wei Y, Wang J, Jiang K, Fan S (2013) Conformal Fe3O4 sheath on aligned carbon nanotube scaffolds as high-performance anodes for lithium ion batteries. Nano Lett 13:818–823

    CAS  Article  Google Scholar 

  36. Wu Z, Pang J, Lu Y (2009b) Synthesis of highly-ordered mesoporous carbon/silica nanocomposites and derivative hierarchically mesoporous carbon from a phenyl-bridged organosiloxane. Nanoscale 1:245–249

    CAS  Article  Google Scholar 

  37. Xing W, Bai P, Li Z, Yu R, Yan Z, Lu G, Lu L (2006) Synthesis of ordered nanoporous carbon and its application in Li-ion battery. Electrochim Acta 51:4626–4633

    CAS  Article  Google Scholar 

  38. Xin S, Guo YG, Wan LJ (2012) Nanocarbon networks for advanced rechargeable lithium batteries. Acc Chem Res 45:1759–1769

    CAS  Article  Google Scholar 

  39. Yang X, Wei C, Sun C, Li X, Chen Y (2017) High performance anode of lithium-ion batteries derived from an advanced carbonaceous porous network. J Alloys Compd 693:777–781

    CAS  Article  Google Scholar 

  40. Yang Y, Suzuki M, Owa S, Shirai H, Hanabusa K (2007) Control of mesoporous silica nanostructures and pore-architectures using a thickener and a gelator. J Am Chem Soc 129:581–587

    CAS  Article  Google Scholar 

  41. Yan Y, Tang H, Wu F, Xie Z, Xu S, Qu D, Wang R, Wu F, Pan M, Qu D (2017) Facile synthesis of Fe2O3@graphite nanoparticle composite as the anode for Lithium ion batteries with high cyclic stability. Electrochim Acta 253:104–113

    CAS  Article  Google Scholar 

  42. Yi J, Li X, Hu S, Li W, Zhou L, Xu M, Lei J, Hao L (2011) Preparation of hierarchical porous carbon and its rate performance as anode of lithium ion battery. J Power Sources 196:6670–6675

    CAS  Article  Google Scholar 

  43. Zhang C, Li Y, Li B, Yang Y (2013) Preparation of single-handed helical carbon/silica and carbonaceous nanotubes by using 4,4 '-biphenylene-bridged polybissilsesquioxane. Chem Asian J 8:2714–2720

    CAS  Article  Google Scholar 

  44. Zhang F, Wang KX, Li GD, Chen JS (2009) Hierarchical porous carbon derived from rice straw for lithium ion batteries with high-rate performance. Electrochem Commun 11:130–133

    CAS  Article  Google Scholar 

  45. Zhang W, Yin J, Lin Z, Lin H, Lu H, Wang Y, Huang W (2015) Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance. Electrochim Acta 176:1136–1142

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 21574095 and 51473106), and the Priority Academic Program Development of Jiangsu High Education Institutions (PAPD).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yi Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Cai, W., Yang, Y. et al. Twisted carbonaceous nanoribbons as high-performance anode material for lithium-ion batteries. J Nanopart Res 21, 62 (2019). https://doi.org/10.1007/s11051-019-4505-6

Download citation

Keywords

  • Amorphous materials
  • Nanostructures
  • Sol-gel chemistry
  • Energy storage
  • Pore architecture