Skip to main content
Log in

Simple co-precipitation synthesis of high-voltage spinel cathodes with different Ni/Mn ratios for lithium-ion batteries

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The high-voltage spinel is a promising cathode material in next generation of lithium-ion batteries. Samples LiNi0.5 − xMn1.5 + xO4 (x = 0, 0.05, 0.1) are synthesized by a simple co-precipitation method, in which pH value and temperature conditions do not need control. In the simple co-precipitation method, NaHCO3 solution is poured into transition metal solution to produce precursor. Ni and Mn are distributed uniformly in the products. The as-prepared samples are composed of ~ 200 nm primary particles. Samples LiNi0.5 − xMn1.5 + xO4 (x = 0, 0.05, 0.1) are also tested to study the effects of different Ni/Mn ratios. Sample LiNi0.5Mn1.5O4 delivers discharge capacities of 130 mAh g−1 at 0.2 C. The decreasing of Ni/Mn ratio in samples reduces specific capacity. With the decreasing of Ni/Mn ratios in spinel, amount of Mn3+ are increased. Attributed to its high Mn3+ contents, sample LiNi0.4Mn1.6O4 delivers the highest discharge capacity of 106 mAh g−1 at a large current density of 15 C, keeping 84.5% of that at 0.2 C rate. With the increasing of Ni/Mn ratios in spinel, cycling performance is improved. Sample LiNi0.5Mn1.5O4 shows the best cycling stability, keeping 94.4% and 90.4% of the highest discharge capacities after 500 cycles at 1 C and 1000 cycles at 5 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Axmann P, Gabrielli G, Wohlfahrt-Mehrens M (2016) Tailoring high-voltage and high-performance LiNi0.5Mn1.5O4 cathode material for high energy lithium-ion batteries. J Power Sources 301:151–159

    Article  CAS  Google Scholar 

  • Bauer S, Biasi L, Glatthaar S, Toukam L, Geßwein H, Baumbach T (2015) In operando study of the high voltage spinel cathode material LiNi0.5Mn1.5O4 using two dimensional full-field spectroscopic imaging of Ni and Mn. Phys Chem Chem Phys 17:16388–16397

    Article  CAS  Google Scholar 

  • Cai Y, Huang Y, Wang X, Jia D, Tang X (2014) Long cycle life, high rate capability of truncated octahedral LiMn2O4 cathode materials synthesized by a solid-state combustion reaction for lithium ion batteries. Ceram Int 40:14039–14043

    Article  CAS  Google Scholar 

  • Cai Y, Huang Y, Wang X, Cai D, Jia W, Tang X (2015) Facile synthesis of LiMn2O4 octahedral nanoparticles as cathode materials for high capacity lithium ion batteries with long cycle life. J Power Sources 278:574–581

    Article  CAS  Google Scholar 

  • Cai Y, Huang Y, Jia W, Wang X, Guo Y, Jia D, Guo Z (2016) Super high-rate, long cycle life of europium-modified, carbon-coated, hierarchical mesoporous lithium-titanate anode materials for lithium ion batteries. J Mater Chem A 4:9949–9957

    Article  CAS  Google Scholar 

  • Chemelewski KR, Shin DW, Li W, Manthiram A (2013) Octahedral and truncated high-voltage spinel cathodes: the role of morphology and surface planes in electrochemical properties. J Mater Chem A 1:3347

    Article  CAS  Google Scholar 

  • Croguennec L, Palacin MR (2015) Recent achievements on inorganic electrode materials for lithium-ion batteries. J Am Chem Soc 137:3140–3156

    Article  CAS  Google Scholar 

  • Fang Y, Huang Y, Zhang S, Jia W, Wang X, Guo Y, Wang L (2017) Synthesis of unique hierarchical mesoporous layered-cube Mn2O3 by dual-solvent for high-capacity anode material of lithium-ion batteries. Chem Eng J 315:583–590

    Article  CAS  Google Scholar 

  • Fang Y, Huang Y, Tong W, Cai Y, Wang X, Guo Y, Zong J (2018) Synthesis of hollow peanut-like hierarchical mesoporous LiNi1/3Co1/3Mn1/3O2 cathode materials with exceptional cycle performance for lithium-ion batteries by a simple self-template solid-state method. J Alloys Compd 743:707–715

    Article  CAS  Google Scholar 

  • Goodenough JB (2014) Electrochemical energy storage in a sustainable modern society. Energy Environ Sci 7:14–18

    Article  CAS  Google Scholar 

  • Gu YJ, Zang QF, Liu HQ, Ding JX, Wang YM, Wang HF, Wei WG (2014) Characterization and electrochemical properties of LiNi0.5Mn1.5O4 prepared by a carbonate co-precipitation method. Int J Electrochem Sci 9:1

    CAS  Google Scholar 

  • Gu YJ, Li Y, Fu Y, Zang QF, Liu HQ, Ding JX, Ni J (2015) LiNi0.5Mn1.5O4 synthesized through ammonia-mediated carbonate precipitation. Electrochim Acta 176:1029–1035

    Article  CAS  Google Scholar 

  • Kim JH, Myung ST, Yoon CS, Kang SG, Sun YK (2004) Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd3m and P4332. Chem Mater 16:906

    Article  CAS  Google Scholar 

  • Kunduraci M, Amatucci GG (2006) Synthesis and characterization of nanostructured 4.7 V LixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries. J Electrochem Soc 153:A1345

    Article  CAS  Google Scholar 

  • Kunduraci M, Amatucci GG (2007) Effect of oxygen non-stoichiometry and temperature on cation ordering in LiMn2−xNixO4 (0.50≥ x≥ 0.36) spinels. J Power Sources 165:359–367

    Article  CAS  Google Scholar 

  • Kunduraci M, Al-sharab JF, Amatucci GG (2006) High-power nanostructured LiMn2-xNixO4 high-voltage lithium-ion battery electrode materials: electrochemical impact of electronic conductivity and morphology. Chem Mater 18:3585–3592

    Article  CAS  Google Scholar 

  • Lee ES, Nam KW, Hun E, Manthiram A (2012) Influence of cation ordering and lattice distortion on the charge–discharge behavior of LiNi0.5Mn1.5O4 spinel between 5.0 and 2.0 V. Chem Mater 24:3610

    Article  CAS  Google Scholar 

  • Li XP, Li WS (2014) Crystallographic facet-and size-controllable synthesis of spinel LiNi0.5Mn1.5O4 with excellent cyclic stability as cathode of high voltage lithium ion battery. J Mater Chem A 2:11987

    Article  Google Scholar 

  • Li SR, Chen CH, Camardese J, Dahn JR (2013) High precision coulometry study of LiNi0.5Mn1.5O4/Li coin cells. J Electrochem Soc 160:A1517–A1523

    Article  CAS  Google Scholar 

  • Liu G, Park KS, Song J, Goodenough JB (2013a) Influence of thermal history on the electrochemical properties of Li[Ni0.5Mn1.5]O4. J Power Sources 243:260

    Article  CAS  Google Scholar 

  • Liu J, Sun Z, Xie J, Chen H, Wu N, Wu B (2013b) Synthesis and electrochemical properties of LiNi0.5−xCuxMn1.5−yAlyO4 (x= 0, 0.05, y= 0, 0.05) as 5 V spinel materials. J Power Sources 240:95–100

    Article  CAS  Google Scholar 

  • Liu H, Zhu G, Zhang L, Qu Q, Shen M, Zheng H (2015) Controllable synthesis of spinel lithium nickel manganese oxide cathode material with enhanced electrochemical performances through a modified oxalate co-precipitation method. J Power Sources 274:1180–1187

    Article  CAS  Google Scholar 

  • Luo W (2015) Effect of morphology on the physical and electrochemical properties of the high-voltage spinel cathode LiNi0.5Mn1.5O4. J Alloy Compd 636:24

    Article  CAS  Google Scholar 

  • Lv YZ, Jin YZ, Xue Y, Wu J, Zhang XG, Wang ZB (2014) Electrochemical properties of high-voltage LiNi0.5Mn1.5O4 synthesized by a solid-state method. RSC Adv 4:26022–26029

    Article  CAS  Google Scholar 

  • Manthiram, Chemelewski K, Lee ES (2014) A perspective on the high-voltage LiNi0.5Mn1.5O4 spinel cathode for lithium-ion batteries. Energy Environ Sci 7:1339

    Article  CAS  Google Scholar 

  • Moorhead-Rosenberg Z, Shin DW, Chemelewski KR, Goodenough JB, Manthiram A (2012) Quantitative determination of Mn3+ content in LiMn1.5Ni0.5O4 spinel cathodes by magnetic measurements. Appl Phys Lett 100:213909

    Article  Google Scholar 

  • Mou J, Deng Y, He L, Zheng Q, Jiang N, Lin D (2018) Critical roles of semi-conductive LaFeO3 coating in enhancing cycling stability and rate capability of 5 V LiNi0.5Mn1.5O4 cathode materials. Electrochim Acta 260:101–111

    Article  CAS  Google Scholar 

  • Park OK, Cho Y, Lee S, Yoo HC, Song HK, Cho J (2011) Who will drive electric vehicles, olivine or spinel? Energy Environ Sci 4:1621–1633

    Article  CAS  Google Scholar 

  • Pieczonka NPW, Liu Z, Lu P, Olson KL, Moote J, Powell BR (2013) Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries. J Phys Chem C 117:15947–15957

    Article  CAS  Google Scholar 

  • Ren W, Luo R, Liu ZS, Tan XY, Fu ZY, Liao SJ (2014) Effect of Ni/Mn ratio on the performance of LiNixMn2−xO4 cathode material for lithium-ion battery. Ionics 20:1361–1366

    Article  CAS  Google Scholar 

  • Santhanam R, Rambabu B (2010) Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. J Power Sources 195:5442–5451

    Article  CAS  Google Scholar 

  • Song J, Shin DW, Lu Y, Amos CD, Manthiram A, Goodenough JB (2012) Role of oxygen vacancies on the performance of Li[Ni0.5-xMn1.5+x]O4 (x=0, 0.05, and 0.08) spinel cathodes for lithium-ion batteries. Chem Mater 24:3101–3109

    Article  CAS  Google Scholar 

  • Tong W, Huang Y, Cai Y, Guo Y, Wang X, Jia D, Zong J (2018) Synthesis of hierarchical mesoporous lithium nickel cobalt manganese oxide spheres with high rate capability for lithium-ion batteries. Appl Surf Sci 428:1036–1045

    Article  CAS  Google Scholar 

  • Wan L, Deng Y, Yang C, Xu H, Qin X, Chen G (2015) Ni/Mn ratio and morphology-dependent crystallographic facet structure and electrochemical properties of the high-voltage spinel LiNi0.5Mn1.5O4 cathode material. RSC Adv 5:25988–25997

    Article  CAS  Google Scholar 

  • Xiao J, Chen X, Sushko PV, Sushko ML, Kovarik L, Feng J, Choi D (2012) High performance LiNi0.5Mn1.5O4 spinel controlled by Mn3+ concentration and site disorder. Adv Mater 24:2109

    Article  CAS  Google Scholar 

  • Xiao J, Yu X, Zheng J, Zhou Y, Gao F, Chen X, Bai J, Yang X-Q, Zhang J-G (2013) Interplay between two-phase and solid solution reactions in high-voltage spinel cathode material for lithium-ion batteries. J Power Sources 242:736–741

    Article  CAS  Google Scholar 

  • Xue Y, Wang ZB, Yu FD, Zhang Y, Yin GP (2014) Ethanol-assisted hydrothermal synthesis of LiNi0.5Mn1.5O4 with excellent long-term cyclability at high rate for lithium-ion batteries. J Mater Chem A 2:4185–4191

    Article  CAS  Google Scholar 

  • Xue Y, Wang ZB, Zheng LL, Yu FD, Liu BS, Zhou YX (2017) Investigation on spinel LiNi0.5Mn1.5O4 synthesized by MnCO3 prepared under different conditions for lithium-ion batteries. ChemistrySelect 2:4324

    Google Scholar 

  • Yao Y, Liu H, Li G, Peng H, Chen K (2014) Multi-shelled porous LiNi0.5Mn1.5O4 microspheres as a 5 V cathode material for lithium-ion batteries. Mater Chem Phys 143:867–872

    Article  CAS  Google Scholar 

  • Yi TF, Hu XG (2007) Preparation and characterization of sub-micro LiNi0.5−xMn1.5+xO4 for 5 V cathode materials synthesized by an ultrasonic-assisted co-precipitation method. J Power Sources 167:185–191

    Article  CAS  Google Scholar 

  • Yi TF, Mei J, Zhu YR (2016) Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries. J Power Sources 316:85–105

    Article  CAS  Google Scholar 

  • Yin C, Zhou H, Yang Z, Li J (2018) Synthesis and electrochemical properties of LiNi0.5Mn1.5O4 for Li-ion batteries by the metal-organic framework method. ACS Appl Mater Interfaces 10:13625–13634

    Article  CAS  Google Scholar 

  • Zhang M, Wang J, Xia Y, Liu Z (2012) Microwave synthesis of spherical spinel LiNi0.5Mn1.5O4 as cathode material for lithium-ion batteries. J Alloys Compd 518:68–73

    Article  CAS  Google Scholar 

  • Zhang Y, Jia D, Tang Y, Huang Y, Pang W, Guo Z, Zhou Z (2018) In situ chelating synthesis of hierarchical LiNi1/3Co1/3Mn1/3O2 polyhedron assemblies with ultralong cycle life for Li-ion batteries. Small 14:1704354

    Article  Google Scholar 

  • Zhu Z, Yan H, Zhang D, Li W, Lu Q (2013) Preparation of 4.7 V cathode material LiNi0.5Mn1.5O4 by an oxalic acid-pretreated solid-state method for lithium-ion secondary battery. J Power Sources 224:13–19

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Natural Science Foundation of China (Grant Nos. 21273058 and 21673064), China postdoctoral science foundation (Grant Nos. 2017M621285 and 2018T110292), and Harbin technological achievements transformation projects (2016DB4AG023) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Bo Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Y., Zheng, LL., Wang, ZB. et al. Simple co-precipitation synthesis of high-voltage spinel cathodes with different Ni/Mn ratios for lithium-ion batteries. J Nanopart Res 20, 257 (2018). https://doi.org/10.1007/s11051-018-4363-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4363-7

Keywords

Navigation