Skip to main content
Log in

The surface science of nanoparticles for catalysis: electronic and steric effects of organic ligands

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Recent studies demonstrate the important roles of surface ligands in creating metal-organic interfaces that can significantly improve both catalytic activity as well as selectivity of chemically synthetized nanoparticle (NP) catalysts. Both steric and electronic effects can be efficiently used to tune catalytic properties of the NPs. Here, we overview the recent advancements in the field of the surface science of NPs for their catalytic applications and discuss the steric and electronic effects of ligands immobilized at the NP surface on the activity and selectivity of catalytically active NPs in different catalytic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albani D, Vile G, Mitchell S, Witte PT, Almora-Barrios N, Verel R, Lopez N, Perez-Ramirez J (2016) Ligand ordering determines the catalytic response of hybrid palladium nanoparticles in hydrogenation. Catal Sci Technol 6:1621–1631

    Article  CAS  Google Scholar 

  • Aliaga C, Park JY, Yamada Y, Lee HS, Tsung C-K, Yang P, Somorjai GA (2009) Sum frequency generation and catalytic reaction studies of the removal of organic capping agents from Pt nanoparticles by UV−ozone treatment. J Phys Chem C 113:6150–6155

    Article  CAS  Google Scholar 

  • Altmann L, Kunz S, Bäumer M (2014) Influence of organic amino and thiol ligands on the geometric and electronic surface properties of Colloidally prepared platinum nanoparticles. J Phys Chem C 118:8925–8932

    Article  CAS  Google Scholar 

  • Anderson NC, Hendricks MP, Choi JJ, Owen JS (2013) Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding. J Am Chem Soc 135:18536–18548

    Article  CAS  Google Scholar 

  • Anderson NC, Owen JS (2013) Soluble, chloride-terminated CdSe nanocrystals: ligand exchange monitored by 1H and 31P NMR spectroscopy. Chem Mater 25:69–76

    Article  CAS  Google Scholar 

  • Ansar SM, Kitchens CL (2016) Impact of gold nanoparticle stabilizing ligands on the colloidal catalytic reduction of 4-Nitrophenol. ACS Catal 6:5553–5560

    Article  CAS  Google Scholar 

  • Badia A, Cuccia L, Demers L, Morin F, Bruce Lennox R (1997) Structure and dynamics in Alkanethiolate monolayers self-assembled on gold nanoparticles: a DSC, FT-IR, and deuterium NMR study. J Am Chem Soc 119:2682–2692

    Article  CAS  Google Scholar 

  • Bonet F, Delmas V, Grugeon S, Herrera Urbina R, Silvert PY, Tekaia-Elhsissen K (1999) Synthesis of monodisperse au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol. Nanostruct Mater 11:1277–1284

    Article  CAS  Google Scholar 

  • Bonifacio CS, Carenco S, Wu CH, House SD, Bluhm H, Yang JC (2015) Thermal stability of Core–Shell nanoparticles: a combined in situ study by XPS and TEM. Chem Mater 27:6960–6968

    Article  CAS  Google Scholar 

  • Bresó-Femenia E, Godard C, Claver C, Chaudret B, Castillón S (2015) Selective catalytic deuteration of phosphorus ligands using ruthenium nanoparticles: a new approach to gain information on ligand coordination. Chem Commun 51:16342–16345

    Article  Google Scholar 

  • Schoenbaum CA, Schwartz DK, Will Medlin J (2013) Controlling surface crowding on a Pd catalyst with thiolate self-assembled monolayers. J Catal 303:92–99

    Article  CAS  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold Nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnol Prog 22:577–583

    Article  CAS  Google Scholar 

  • Chen G, Xu C, Huang X, Ye J, Lin G, Li G, Tang Z, Wu B, Yang H, Zhao Z, Zhou Z, Gang F, Zheng N (2016) Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat Mater 15:564–569

    Article  CAS  Google Scholar 

  • Chen MS, Goodman DW (2004) The structure of catalytically active gold on Titania. Science 306:252–255

    Article  CAS  Google Scholar 

  • Chen M, Goodman DW (2008) Catalytically active gold on ordered titania supports. Chem Soc Rev 37:1860–1870

    Article  CAS  Google Scholar 

  • Crumlin EJ, Mutoro E, Hong WT, Biegalski MD, Christen HM, Liu Z, Bluhm H, Yang S-H (2013) In situ ambient pressure X-ray photoelectron spectroscopy of cobalt perovskite surfaces under cathodic polarization at high temperatures. J Phys Chem C 117:16087–16094

    Article  CAS  Google Scholar 

  • Cusinato L, del Rosal I, Poteau R (2017) Shape, electronic structure and steric effects of organometallic nanocatalysts: relevant tools to improve the synergy between theory and experiment. Dalton Trans 46:378–395

    Article  CAS  Google Scholar 

  • Dablemont C, Lang P, Mangeney C, Piquemal J-Y, Petkov V, Herbst F, Viau G (2008) FTIR and XPS study of Pt nanoparticle functionalization and interaction with alumina. Langmuir 24:5832–5841

    Article  CAS  Google Scholar 

  • Dong A, Ye X, Chen J, Kang Y, Gordon T, Kikkawa JM, Murray CB (2011) A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J Am Chem Soc 133:998–1006

    Article  CAS  Google Scholar 

  • Dunleavy J (2006) Sulfur as a catalyst poison. Platinum Metals Rev 50:110

    Article  CAS  Google Scholar 

  • Ertl G (2008) Reactions at surfaces: from atoms to complexity (Nobel lecture). Angew Chem Int Ed 47:3524–3535

    Article  CAS  Google Scholar 

  • Fedorov A, Liu H-J, Lo H-K, Copéret C (2016) Silica-supported cu nanoparticle catalysts for alkyne Semihydrogenation: effect of ligands on rates and selectivity. J Am Chem Soc 138:16502–16507

    Article  CAS  Google Scholar 

  • Feng B, Hou Z, Yang H, Xiangrui Wang YH, Li H, Qiao Y, Zhao X, Huang Q (2010) Functionalized poly (ethylene glycol)-stabilized water-soluble palladium nanoparticles: property/activity relationship for the aerobic alcohol oxidation in water. Langmuir 26:2505–2513

    Article  CAS  Google Scholar 

  • Ferri D, Bürgi T (2001) An in situ attenuated Total reflection infrared study of a chiral catalytic solid−liquid Interface: Cinchonidine adsorption on Pt. J Am Chem Soc 123:12074–12084

    Article  CAS  Google Scholar 

  • Fritzinger B, Capek RK, Lambert K, Martins JC, Hens Z (2010) Utilizing self-exchange to address the binding of carboxylic acid ligands to CdSe quantum dots. J Am Chem Soc 132:10195–10201

    Article  CAS  Google Scholar 

  • Fritzinger B, Moreels I, Lommens P, Koole R, Hens Z, Martins JC (2009) In situ observation of rapid ligand exchange in colloidal nanocrystal suspensions using transfer NOE nuclear magnetic resonance spectroscopy. J Am Chem Soc 131:3024–3032

    Article  CAS  Google Scholar 

  • Gehl B, Flege JI, Aleksandrovic V, Schmidt T, Kornowski A, Bernstorff S, Falta J, Weller H, Bäumer M (2008a) Plasma modification of CoPt3 nanoparticle arrays: a route to catalytic coatings of surfaces. J Vac Sci Technol A 26:908–912

    Article  CAS  Google Scholar 

  • Gehl B, Frömsdorf A, Aleksandrovic V, Schmidt T, Pretorius A, Flege J-I, Bernstorff S, Rosenauer A, Falta J, Weller H, Bäumer M (2008b) Structural and chemical effects of plasma treatment on close-packed colloidal nanoparticle layers. Adv Funct Mater 18:2398–2410

    Article  CAS  Google Scholar 

  • Gomes R, Hassinen A, Szczygiel A, Zhao Q, Vantomme A, Martins JC, Hens Z (2011) Binding of Phosphonic acids to CdSe quantum dots: a solution NMR study. J Phys Chem Lett 2:145–152

    Article  CAS  Google Scholar 

  • Grunes J, Zhu J, Somorjai GA (2003) Catalysis and nanoscience. Chem Commun:2257–2260

  • Hassinen A, Moreels I, de Mello Donegá C, Martins JC, Hens Z (2010) Nuclear magnetic resonance spectroscopy demonstrating dynamic stabilization of CdSe quantum dots by Alkylamines. J Phys Chem Lett 1:2577–2581

    Article  CAS  Google Scholar 

  • Hens Z, Martins JC (2013) A solution NMR toolbox for characterizing the surface chemistry of colloidal nanocrystals. Chem Mater 25:1211–1221

    Article  CAS  Google Scholar 

  • Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK (2005) Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 127:5308–5309

    Article  CAS  Google Scholar 

  • Hostetler MJ, Stokes JJ, Murray RW (1996) Infrared spectroscopy of three-dimensional self-assembled monolayers: N-Alkanethiolate monolayers on gold cluster compounds. Langmuir 12:3604–3612

    Article  CAS  Google Scholar 

  • Hüfner S (1995) Photoelectron spectroscopy: principles and applications. (springer Verlag)

  • Jeong H, Kim C, Yang S, Lee H (2016) Selective hydrogenation of furanic aldehydes using Ni nanoparticle catalysts capped with organic molecules. J Catal 344:609–615

    Article  CAS  Google Scholar 

  • Knittel F, Gravel E, Cassette E, Pons T, Pillon F, Dubertret B, Doris E (2013) On the characterization of the surface chemistry of quantum dots. Nano Lett 13:5075–5078

    Article  CAS  Google Scholar 

  • Krishnan P, Liu M, Itty PA, Liu Z, Rheinheimer V, Zhang M-H, Monteiro PJM, Yu LE (2017) Characterization of photocatalytic TiO2 powder under varied environments using near ambient pressure X-ray photoelectron spectroscopy. Sci Rep 7:43298

    Article  Google Scholar 

  • Kunz S, Iglesia E (2014) Mechanistic evidence for sequential displacement–reduction routes in the synthesis of Pd–au clusters with uniform size and clean surfaces. J Phys Chem C 118:7468–7479

    Article  CAS  Google Scholar 

  • Kwon SG, Krylova G, Sumer A, Schwartz MM, Bunel EE, Marshall CL, Chattopadhyay S, Lee B, Jellinek J, Shevchenko EV (2012) Capping ligands as selectivity switchers in hydrogenation reactions. Nano Lett 12:5382–5388

    Article  CAS  Google Scholar 

  • Laibinis PE, Whitesides GM, Allara DL, Tao YT, Parikh AN, Nuzzo RG (1991) Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold. J Am Chem Soc 113:7152–7167

    Article  CAS  Google Scholar 

  • Lang H, Alan May R, Iversen BL, Chandler BD (2003) Dendrimer-encapsulated nanoparticle precursors to supported platinum catalysts. J Am Chem Soc 125:14832–14836

    Article  CAS  Google Scholar 

  • Lee KY, Lee YW, Lee J-H, Han SW (2010) Effect of ligand structure on the catalytic activity of au nanocrystals. Colloids Surf A Physicochem Eng Asp 372:146–150

    Article  CAS  Google Scholar 

  • Li D, Wang C, Tripkovic D, Sun S, Markovic NM, Stamenkovic VR (2012) Surfactant removal for colloidal nanoparticles from solution synthesis: the effect on catalytic performance. ACS Catal 2:1358–1362

    Article  CAS  Google Scholar 

  • Liu H, Mei Q, Li S, Yang Y, Wang YY, Liu H, Zheng LR, An P, Zhang J, Han B (2018) Selective hydrogenation of unsaturated aldehydes over Pt nanoparticles promoted by the cooperation of steric and electronic effects. Chem Commun 54:908–911

    Article  CAS  Google Scholar 

  • Liu P, Qin R, Gang F, Zheng N (2017) Surface coordination chemistry of metal nanomaterials. J Am Chem Soc 139:2122–2131

    Article  CAS  Google Scholar 

  • Lopez N, Janssens TVW, Clausen BS, Xu Y, Mavrikakis M, Bligaard T, Nørskov JK (2004) On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J Catal 223:232–235

    Article  CAS  Google Scholar 

  • Love JC, Wolfe DB, Haasch R, Chabinyc ML, Paul KE, Whitesides GM, Nuzzo RG (2003) Formation and structure of self-assembled monolayers of Alkanethiolates on palladium. J Am Chem Soc 125:2597–2609

    Article  CAS  Google Scholar 

  • Luksirikul P, Tedsree K, Moloney MG, Green MLH, Tsang SCE (2012) Electron promotion by surface functional groups of Single Wall carbon nanotubes to overlying metal particles in a fuel-cell catalyst. Angew Chem Int Ed 51:6998–7001

    Article  CAS  Google Scholar 

  • M LG, Begoña P, Masoud S, Núria L, Javier P-R (2017) Hybrid palladium nanoparticles for direct hydrogen peroxide synthesis: the key role of the ligand. Angew Chem Int Ed 56:1775–1779

    Article  Google Scholar 

  • Maeda N, Hungerbühler K, Baiker A (2011) Asymmetric hydrogenation on Chirally modified Pt: origin of hydrogen in the N–H–O interaction between Cinchonidine and ketone. J Am Chem Soc 133:19567–19569

    Article  CAS  Google Scholar 

  • Marit K, Anja H, Paul D, Andreas T, Stephan B, Benjamin R, Erhard K, Unger Wolfgang ES (2017) Detection of suspended nanoparticles with near-ambient pressure x-ray photoelectron spectroscopy. J Phys Condens Matter 29:474002

    Article  Google Scholar 

  • "Market Report. Global Catalyst Market." In. 2015

  • Marshall ST, Schwartz DK, William Medlin J (2011) Adsorption of oxygenates on Alkanethiol-functionalized Pd(111) surfaces: mechanistic insights into the role of self-assembled monolayers on catalysis. Langmuir 27:6731–6737

    Article  CAS  Google Scholar 

  • Martin R, Buchwald SL (2008) Palladium-catalyzed Suzuki−Miyaura cross-coupling reactions employing Dialkylbiaryl phosphine ligands. Acc Chem Res 41:1461–1473

    Article  CAS  Google Scholar 

  • McCue AJ, McKenna F-M, Anderson JA (2015) Triphenylphosphine: a ligand for heterogeneous catalysis too? Selectivity enhancement in acetylene hydrogenation over modified Pd/TiO2 catalyst. Catal Sci Technol 5:2449–2459

    Article  CAS  Google Scholar 

  • McFadden CF, Cremer PS, Gellman AJ (1996) Adsorption of chiral alcohols on “chiral” metal surfaces. Langmuir 12:2483–2487

    Article  CAS  Google Scholar 

  • Meemken F, Hungerbühler K, Baiker A (2014) Monitoring surface processes during heterogeneous asymmetric hydrogenation of ketones on a Chirally modified platinum catalyst by operando spectroscopy. Angew Chem Int Ed 53:8640–8644

    Article  CAS  Google Scholar 

  • Mizrahi MD, Krylova G, Giovanetti LJ, Ramallo-López JM, Liu Y, Shevchenko EV, Requejo FG (2018) Unexpected compositional and structural modification of CoPt3 nanoparticles by extensive surface purification. Nanoscale 10:6382–6392

    Article  CAS  Google Scholar 

  • Moglianetti M, Ong QK, Reguera J, Harkness KM, Mameli M, Radulescu A, Kohlbrecher J, Jud C, Svergun DI, Stellacci F (2014) Scanning tunneling microscopy and small angle neutron scattering study of mixed monolayer protected gold nanoparticles in organic solvents. Chem Sci 5:1232–1240

    Article  CAS  Google Scholar 

  • Morris-Cohen AJ, Donakowski MD, Knowles KE, Weiss EA (2010) The effect of a common purification procedure on the chemical composition of the surfaces of CdSe quantum dots synthesized with Trioctylphosphine oxide. J Phys Chem C 114:897–906

    Article  CAS  Google Scholar 

  • Morris-Cohen, Adam J., Michał Malicki, Mark D. Peterson, John W. J. Slavin, and Emily A. Weiss. 2013. 'Chemical, structural, and quantitative analysis of the ligand shells of colloidal quantum dots', Chem Mater, 25: 1155–1165

    Article  Google Scholar 

  • Nasri NS, Jones JM, Dupont VA, Williams A (1998) A comparative study of sulfur poisoning and regeneration of precious-metal catalysts. Energy Fuel 12:1130–1134

    Article  CAS  Google Scholar 

  • Ouyang R, Jiang D-e (2015) Understanding Selective Hydrogenation of α,β-Unsaturated Ketones to Unsaturated Alcohols on the Au25(SR)18 Cluster. ACS Catal 5:6624–6629

    Article  CAS  Google Scholar 

  • Owen J (2015) The coordination chemistry of nanocrystal surfaces. Science 347:615–616

    Article  CAS  Google Scholar 

  • Ren D, Lin H, Yu L, Ding R-S, Liu Y-M, Cao Y, He H-Y, Fan K-N (2012) An unusual Chemoselective hydrogenation of Quinoline compounds using supported gold catalysts. J Am Chem Soc 134:17592–17598

    Article  CAS  Google Scholar 

  • Rodriguez JA, Ma S, Liu P, Hrbek J, Evans J, Pérez M (2007) Activity of CeO<sub><em>x</em></sub> and TiO<sub><em>x</em></sub> nanoparticles grown on au(111) in the water-gas shift reaction. Science 318:1757–1760

    Article  CAS  Google Scholar 

  • Rossi LM, Fiorio JL, Garcia MAS, Ferraz CP (2018) Role and fate of capping ligands in colloidally prepared metal nanoparticle catalysts. Transactions, Dalton

    Google Scholar 

  • Saveleva VA, Papaefthimiou V, Daletou MK, Doh WH, Ulhaq-Bouillet C, Diebold M, Zafeiratos S, Savinova ER (2016) Operando near ambient pressure XPS (NAP-XPS) study of the Pt electrochemical oxidation in H2O and H2O/O2 Ambients. J Phys Chem C 120:15930–15940

    Article  CAS  Google Scholar 

  • Schnadt J, Knudsen J, Andersen JN, Siegbahn H, Pietzsch A, Hennies F, Johansson N, Mårtensson N, Öhrwall G, Bahr S, Mähl S, Schaff O (2012) The new ambient-pressure X-ray photoelectron spectroscopy instrument at MAX-lab. J Synchrotron Radiat 19:701–704

    Article  CAS  Google Scholar 

  • Schrader I, Neumann S, Šulce A, Schmidt F, Azov V, Kunz S (2017) Asymmetric heterogeneous catalysis: transfer of molecular principles to nanoparticles by ligand functionalization. ACS Catal 7:3979–3987

    Article  CAS  Google Scholar 

  • Schrader I, Warneke J, Backenköhler J, Kunz S (2015) Functionalization of platinum nanoparticles with l-proline: simultaneous enhancements of catalytic activity and selectivity. J Am Chem Soc 137:905–912

    Article  CAS  Google Scholar 

  • Snelders DJM, Yan N, Gan W, Laurenczy G, Dyson PJ (2012) Tuning the Chemoselectivity of Rh nanoparticle catalysts by site-selective poisoning with phosphine ligands: the hydrogenation of functionalized aromatic compounds. ACS Catal 2:201–207

    Article  CAS  Google Scholar 

  • Son JG, Choi E, Piao Y, Han SW, Lee TG (2016) Probing organic ligands and their binding schemes on nanocrystals by mass spectrometric and FT-IR spectroscopic imaging. Nanoscale 8:4573–4578

    Article  CAS  Google Scholar 

  • Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM (2006) Effect of surface composition on electronic structure, stability, and Electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J Am Chem Soc 128:8813–8819

    Article  CAS  Google Scholar 

  • Marshall ST, O’Brien M, Oetter B, Corpuz A, Richards RM, Schwartz DK, William Medlin J (2010) Controlled selectivity for palladium catalysts using self-assembled monolayers. Nature Materials 9:853–858

    Article  CAS  Google Scholar 

  • Stowell CA, Korgel BA (2005) Iridium nanocrystal synthesis and surface coating-dependent catalytic activity. Nano Lett 5:1203–1207

    Article  CAS  Google Scholar 

  • Taguchi T, Isozaki K, Miki K (2012) Enhanced catalytic activity of self-assembled-monolayer-capped gold nanoparticles. Adv Mater 24:6462–6467

    Article  CAS  Google Scholar 

  • Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458

    Article  CAS  Google Scholar 

  • Tao F, Grass ME, Zhang Y, Butcher DR, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA (2008) Reaction-driven restructuring of Rh-Pd and Pt-Pd Core-Shell nanoparticles. Science 322:932–934

    Article  CAS  Google Scholar 

  • Tataurova YN (2014) Proton NMR studies of functionalized nanoparticles in aqueous environments. University of, Iowa

    Google Scholar 

  • Tolman CA (1977) Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis. Chem Rev 77:313–348

    Article  CAS  Google Scholar 

  • Tsunoyama H, Ichikuni N, Sakurai H, Tsukuda T (2009) Effect of electronic structures of au clusters stabilized by poly (N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. J Am Chem Soc 131:7086–7093

    Article  CAS  Google Scholar 

  • Villa A, Wang D, Veith GM, Vindigni F, Prati L (2013) Sol immobilization technique: a delicate balance between activity, selectivity and stability of gold catalysts. Catal Sci Technol 3:3036–3041

    Article  CAS  Google Scholar 

  • Von White G, Mohammed FS, Kitchens CL (2011) Small-angle neutron scattering investigation of gold nanoparticle clustering and ligand structure under Antisolvent conditions. J Phys Chem C 115:18397–18405

    Article  Google Scholar 

  • Wu B, Huang H, Yang J, Zheng N, Gang F (2012) Selective Hydrogenation of α,β-Unsaturated Aldehydes Catalyzed by Amine-Capped Platinum-Cobalt Nanocrystals. Angew Chem Int Ed 51:3440–3443

    Article  CAS  Google Scholar 

  • Yamamoto S, Bluhm H, Andersson K, Ketteler G, Ogasawara H, Salmeron M, Nilsson A (2008) In situ x-ray photoelectron spectroscopy studies of water on metals and oxides at ambient conditions. J Phys Condens Matter 20:184025

    Article  Google Scholar 

  • Zeng B, Palui G, Zhang C, Zhan N, Wang W, Ji X, Chen B, Mattoussi H (2017) Characterization of the ligand capping of hydrophobic CdSe–ZnS quantum dots using NMR spectroscopy. Materials, Chemistry of

    Google Scholar 

  • Zhou K, Li Y (2012) Catalysis based on nanocrystals with well-defined facets. Angew Chem Int Ed 51:602–613

    Article  CAS  Google Scholar 

  • Zhou Z-Y, Kang X, Yang S, Chen S (2012) Ligand-mediated Electrocatalytic activity of Pt nanoparticles for oxygen reduction reactions. J Phys Chem C 116:10592–10598

    Article  CAS  Google Scholar 

  • Zhou Z-Y, Tian N, Li J-T, Broadwell I, Sun S-G (2011) Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem Soc Rev 40:4167–4185

    Article  CAS  Google Scholar 

  • Zhu Y, Qian H, Drake BA, Jin R (2010) Atomically Precise Au25(SR)18 Nanoparticles as Catalysts for the Selective Hydrogenation of α,β-Unsaturated Ketones and Aldehydes. Angew Chem Int Ed 49:1295–1298

    Article  CAS  Google Scholar 

Download references

Funding

Work at the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Energy Sciences under Contract no. DE-AC02-06CH11357. The work of Dr. Wenting Wu was financially supported by NSFC (51672309 and 21302224), and by the Fundamental Research Funds for Central Universities (18CX07009A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena V. Shevchenko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This article is part of the topical collection: 20th Anniversary Issue: From the editors

Nicola Pinna, Executive Editor, Mike Roco, Editor-in-Chief

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Shevchenko, E.V. The surface science of nanoparticles for catalysis: electronic and steric effects of organic ligands. J Nanopart Res 20, 255 (2018). https://doi.org/10.1007/s11051-018-4319-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4319-y

Keywords

Navigation