Skip to main content

Advertisement

Log in

Coprecipitated Fe/K/spinel nanocomposites for Fischer-Tropsch to lower olefins

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Literature about ZnAl2O4-supported iron Fischer-Tropsch to lower olefins (FTO) catalytic materials is sparse. Fe/K/spinel nanocomposites were synthesized by coprecipitation of Fe/Zn/Al nitrates with a precipitant as well as subsequent calcinations at 350 °C, followed by impregnation of potassium source. Materials were investigated by XRD, N2 sorption, FESEM, CO2-TPD as well as catalytic performance tests. Addition of potassium may remove the high-temperature desorption peak for strong basicity sites and increase both the strength and number of weak basicity sites on the surface of nanocomposites. Effects of reaction temperature, total pressure, space velocity as well as potassium content on catalytic performance of nanocomposites were systematically investigated. The ZnAl2O4 phase in support is able to remain a stable structure during the CO hydrogenation tests. The ZnAl2O4 phase may efficiently drive formed hydrocarbon molecules away from nanocomposite surface and thus can effectively hinder C–C coupling. Fe/K2O/ZnAl2O4·Al2O3 nanocomposites achieve very high short chain (C1-C4) hydrocarbon distribution value of 81.7–96.3% throughout their tested parameter range. At a condition of 0.5 MPa, 350 °C, and 1500 mL·g cat−1·h−1, the nanocomposite catalyst with a K2O content of 2%, which has a primary particle size of ca. 10 nm, achieves its maximum C2=-C4= hydrocarbon distribution of 53.4%, and, reaches a C2-C4 hydrocarbon distribution value of 61.7% which exceeds the ASF (Anderson-Schulz-Flory) limit value of 58%. These results indicate that novel supports and appropriate promoters own significant potential and are worthy of further investigations for iron-based FTO nanocomposite catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Buyanov RA, Pakhomov NA (2001) Catalysts and processes for paraffin and olefin dehydrogenation. Kinet Catal 42:64–75

    Article  Google Scholar 

  • Chen W, Kimpel TF, Song Y, Chiang F-K, Zijlstra B, Pestman R, Wang P, Hensen EJM (2018) Influence of carbon deposits on the cobalt-catalyzed Fischer-Tropsch reaction: evidence of a two-site reaction model. ACS Catal 8:1580–1590

    Article  Google Scholar 

  • Collinge G, Kruse N, McEwen J-S (2017) Role of carbon monoxide in catalyst reconstruction for CO hydrogenation: first-principles study of the composition, structure, and stability of Cu/Co(1012) as a function of CO pressure. J Phys Chem C 121:2181–2191

    Article  Google Scholar 

  • Enger BC, Fossan Å-L, Borg Ø, Rytter E, Holmen A (2011) Modified alumina as catalyst support for cobalt in the Fischer-Tropsch synthesis. J Catal 284:9–22

    Article  Google Scholar 

  • Feyzi M, Khodaei MM, Shahmoradi J (2012) Effect of preparation and operation conditions on the catalytic performance of cobalt-based catalysts for light olefins production. Fuel Process Technol 93:90–98

    Article  Google Scholar 

  • Fronzo AD, Pirola C, Comazzi A, Galli F, Bianchi CL, Michele AD, Vivani R, Nocchetti M, Bastianini M, Boffito DC (2014) Co-based hydrotalcites as new catalysts for the Fischer-Tropsch synthesis process. Fuel 119:62–69

    Article  Google Scholar 

  • Galvis HMT, de Jong KP (2013) Catalysts for production of lower olefins from synthesis gas: a review. ACS Catal 3:2130–2149

    Article  Google Scholar 

  • Gupta M, Smith ML, Spivey JJ (2011) Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on Cu-based catalysts. ACS Catal 1:641–656

    Article  Google Scholar 

  • Jiao F, Li J, Pan X, Xiao J, Li H, Ma H, Wei M, Pan Y, Zhou Z, Li M, Miao S, Li J, Zhu Y, Xiao D, He T, Yang J, Qi F, Fu Q, Bao X (2016) Selective conversion of syngas to light olefins. Science 351:1065–1068

    Article  Google Scholar 

  • Jongsomjit B, Panpranot J, Goodwin JG (2001) Co-support compound formation in alumina-supported cobalt catalysts. J Catal 204:98–109

    Article  Google Scholar 

  • Li S, Li A, Krishnamoorthy S, Iglesia E (2001) Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer-Tropsch synthesis catalysts. Catal Lett 77:197–205

    Article  Google Scholar 

  • Liu Z, Xing Y, Xue Y, Wu D, Fang S (2015a) Synthesis, characterization, and Fischer-Tropsch performance of cobalt/zinc aluminate nanocomposites via a facile and corrosion-free coprecipitation route. J Nanopart Res 17. https://doi.org/10.1007/s11051-015-2899-3

  • Liu Z, Xue Y, Wu D, Xing Y, Fang S (2015b) Effects of water addition on CO hydrogenation over zinc-containing spinel-supported cobalt catalyst. Catal Lett 145:1941–1947

    Article  Google Scholar 

  • Liu Z, Wu D, Xing Y, Guo X, Fang S (2016) Effect of in-situ sulfur poisoning on zinc-containing spinel-supported cobalt CO hydrogenation catalyst. Appl Catal A Gen 514:164–172

    Article  Google Scholar 

  • Liu Z, Wu D, Guo X, Fang S, Wang L, Xing Y, Suib SL (2017) Robust macroscopic 3D sponges of manganese oxide molecular sieves. Chem Eur J 23:16213–16218

    Article  Google Scholar 

  • Luk HT, Mondelli C, Perez-Ramirez J, Ferre DC, Stewart JA (2017) Status and prospects in higher alcohols synthesis from syngas. Chem Soc Rev 46:1358–1426

    Article  Google Scholar 

  • Madikizela-Mnqanqeni NN, Coville NJ (2005) The effect of cobalt and zinc precursors on Co (10%)/Zn (x%)/TiO2 (x=0, 5) Fischer-Tropsch catalysts. J Mol Catal A Chem 225:137–142

    Article  Google Scholar 

  • Maitlis PM, de Klerk A (2013) Greener Fischer-Tropsch processes for fuels and feedstocks. Wiley-VCH Verlag & Co. KGaA, Weinheim, pp 237–265

    Book  Google Scholar 

  • Maitlis PM, Zanotti V (2008) Organometallic models for metal surface reactions: chain growth involving electrophilic methylidynes in the Fischer-Tropsch reaction. Catal Lett 122:80–83

    Article  Google Scholar 

  • Maitlis PM, Zanotti V (2009) The role of electrophilic species in the Fischer-Tropsch reaction. Chem Commun 1619–1634

  • Marin RP, Kondrat SA, Davies TE, Morgan DJ, Enache DI, Combes GB, Taylor SH, Bartley JK, Hutchings GJ (2014) Novel cobalt zinc oxide Fischer-Tropsch catalysts synthesised using supercritical anti-solvent precipitation. Catal Sci Technol 4:1970–1978

    Article  Google Scholar 

  • Mo X, Tsai Y-T, Gao J, Mao D, Goodwin JGJ (2012) Effect of component interaction on the activity of Co/CuZnO for CO hydrogenation. J Catal 285:208–215

    Article  Google Scholar 

  • Pan Z, Bukur DB (2011) Fischer-Tropsch synthesis on Co/ZnO catalyst-effect of pretreatment procedure. Appl Catal A Gen 404:74–80

    Google Scholar 

  • Pan Z, Parvari M, Bukur DB (2014) Fischer-Tropsch synthesis on Co/ZnO - two step activation procedure for improved performance. Appl Catal A Gen 480:79–85

    Article  Google Scholar 

  • Paredes-Nunez A, Lorito D, Burel L, Motta-Meira D, Agostini G, Guilhaume N, Schuurman Y, Meunier F (2018) CO hydrogenation on cobalt-based catalysts: tin poisoning unravels CO in hollow sites as a main surface intermediate. Angew Chem Int Ed 57:547–550

    Article  Google Scholar 

  • Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Simmieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl Chem 57:603–619

    Article  Google Scholar 

  • Tihay F, Pourroy G, Roger AC, Kiennemann A (1998) Selective synthesis of C2-C4 olefins on Fe-Co based metal/oxide composite materials. Stud Surf Sci Catal 119:143–148

    Article  Google Scholar 

  • Torres Galvis HM, Bitter JH, Ruitenbeek M, de Jong KP (2012) Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 335:835–838

    Article  Google Scholar 

  • Torres Galvis HM, Koeken ACJ, Bitter JH, Davidian T, Ruitenbeek M, Dugulan AI, de Jong KP (2013) Effects of sodium and sulfur on catalytic performance of supported iron catalysts for the Fischer-Tropsch synthesis of lower olefins. J Catal 303:22–30

    Article  Google Scholar 

  • Wan H, Wu B, Zhang C, Teng B, Zhu Y, Xiang H, Li Y (2006) Effect of Al2O3/SiO2 ratio on iron-based catalysts for Fischer-Tropsch synthesis. Fuel 85:1371–1377

    Article  Google Scholar 

  • Wang X, Ning W, Hu L, Li Y (2012) Influences of Al2O3 on the structure and reactive performance of Co/ZnO catalyst. Catal Commun 24:61–64

    Article  Google Scholar 

  • Xing Y, Liu Z, Xue Y, Wu D, Fang S (2016) Variation trends of CO hydrogenation performance of (Al)-O-(Zn) supported cobalt nanocomposites: effects of gradual doping with Zn-O Lewis base. Catal Lett 146:682–691

    Article  Google Scholar 

  • Xue Y, Ge H, Chen Z, Zhai Y, Zhang J, Sun J, Abbas M, Lin K, Zhao W, Chen J (2018) Effect of strain on the performance of iron-based catalyst in Fischer-Tropsch synthesis. J Catal 358:237–242

    Article  Google Scholar 

  • Yang W, Gao H, Xiang H, Yin D, Yang Y, Yang J, Xu Y, Li Y (2001) Cobalt supported mesoporous silica catalyst for Fischer-Tropsch synthesis. Acta Chim Sin 59:1870–1877

    Google Scholar 

  • Zhong L, Yu F, An Y, Zhao Y, Sun Y, Li Z, Lin T, Lin Y, Qi X, Dai Y, Gu L, Hu J, Jin S, Shen Q, Wang H (2016) Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature 538:84–87

    Article  Google Scholar 

  • Zhukhovitskiy AV, Kobylianskii IJ, Wu C-Y, Toste FD (2018) Migratory insertion of carbenes into Au(III)-C bonds. J Am Chem Soc 140:466–474

    Article  Google Scholar 

Download references

Funding

We thank the National Natural Science Foundation of China (NSFC, No. 21571161) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Xing or Zhenxin Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Y., Zhao, C., Jia, G. et al. Coprecipitated Fe/K/spinel nanocomposites for Fischer-Tropsch to lower olefins. J Nanopart Res 20, 202 (2018). https://doi.org/10.1007/s11051-018-4304-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4304-5

Keywords

Navigation