Bimetallic NiFe2O4 synthesized via confined carburization in NiFe-MOFs for efficient oxygen evolution reaction

  • Zhiqiang Fang
  • Zhaomin Hao
  • Qingsong Dong
  • Yong Cui
Research Paper


Transition metal oxides that derived from metal–organic framework (MOF) precursor have intensively received attention because of their numerous electrochemical applications. Bimetallic Ni-Fe oxides have been rarely reported on the basis of MOF-related strategy. Herein, a bimetallic NiFe2O4 was successfully synthesized via confined carburization in NiFe-MOF precursors and characterized by XRD, XPS, SEM, and TEM. After conducting an investigation of oxygen evolution reaction (OER), the as-synthesized NiFe2O4 material exhibited good catalytic efficiency and high stability and durability in alkaline media. The as-synthesized NiFe2O4 material would promote the development of MOFs in non-noble-metal OER catalyst.


Metal oxides Particles Nanosize X-ray techniques Oxygen evolution reaction Electrochemical applications 



The study authors are financially aided by the National Natural Science Foundation of China (grant nos. 21401203 and 21702045), the Education Department of Henan Province (grant no. 15A150035), and the Opening Foundations of Chinese Academy of Sciences (RERU2017016).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alessandro HA, Monteverde V, Pawel S, Giuliana E, Stefania S (2017) Benchmark comparison of Co3O4 spinel-structured oxides with different morphologies for oxygen evolution reaction under alkaline conditions. J Appl Electrochem 47:295–304CrossRefGoogle Scholar
  2. Bao J, Zhang XD, Fan B, Zhang JJ, Zhou M, Yang WL, Hu X, Wang H, Pan BC, Xie Y (2015) Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew Chem 127:7507–7512CrossRefGoogle Scholar
  3. Bard AJ, Fox MA (1995) Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc Chem Res 28:141–145CrossRefGoogle Scholar
  4. Bian W, Yang Z, Strasser P, Yang R (2014) A CoFe2O4/graphene nanohybrid as an efficient bi-functional electrocatalyst for oxygen reduction and oxygen evolution. J Power Sources 250:196–203CrossRefGoogle Scholar
  5. Bureekaew S, Horilke S, Higuchi M, Mizuno M, Kawamura T, Tanaka D, Yanai N, Kitagawa S (2009) One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity. Nat Mater 8:831–836CrossRefGoogle Scholar
  6. Chaikittisilp W, Ariga K, Yamauchi Y (2013) A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications. J Mater Chem A 1:14–19CrossRefGoogle Scholar
  7. Chen S, Qiao SZ (2013) Hierarchically porous nitrogen-doped graphene–NiCo2O4 hybrid paper as an advanced electrocatalytic water-splitting material. ACS Nano 7:10190–10196CrossRefGoogle Scholar
  8. Chen H, Huang XX, Zhou LJ, Li GD, Fan MH, Zou XX (2016a) Electrospinning synthesis of bimetallic nickel–iron oxide/carbon composite nanofibers for efficient water oxidation electrocatalysis. ChemCatChem 8:992–1000CrossRefGoogle Scholar
  9. Chen H, Yan J, Wu H, Zhang Y, Liu S (2016b) One-pot fabrication of NiFe2O4 nanoparticles on α-Ni(OH)2 nanosheet for enhanced water oxidation. J Power Sources 324:499–508CrossRefGoogle Scholar
  10. Cheng FY, Chen J (2012) Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 41:2172–2192CrossRefGoogle Scholar
  11. Chow J, Kopp RJ, Portney PR (2003) Energy resources and global development. Science 302:1528–1532CrossRefGoogle Scholar
  12. Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110:6474–6502CrossRefGoogle Scholar
  13. Dong B, Zhao X, Han GQ, Li X, Shang X, Liu YR, Hu WH, Chai YM, Zhao H, Liu GG (2016) Two-step synthesis of binary Ni-Fe sulfides supported on nickel foam as highly efficient electrocatalysts for the oxygen evolution reaction. J Mater Chem A 4:13499–13508CrossRefGoogle Scholar
  14. Dupin JC, Gonbeau D, Vinatier P, Levasseur A (2000) Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys Chem Chem Phys 2:1319–1324CrossRefGoogle Scholar
  15. Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Margiolaki I (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309:2040–2042CrossRefGoogle Scholar
  16. Fominykh K, Chernev K, Zaharieva I, Sicklinger J, Stefanic G, Doblinger M, Muller A, Pokharel A, Bocklein S, Scheu C, Bein T, Fattakhova-Rohlfing D (2015) Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting. ACS Nano 9:5180–5188CrossRefGoogle Scholar
  17. Gao T, Jin Z, Liao M, Xiao J, Yuan H, Xiao D (2015) A trimetallic V–Co–Fe oxide nanoparticle as an efficient and stable electrocatalyst for oxygen evolution reaction. J Mater Chem A 3:17763–17770CrossRefGoogle Scholar
  18. Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H (2013) An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J Am Chem Soc 135:8452–8455CrossRefGoogle Scholar
  19. Han GQ, Liu YR, Hu WH, Dong B, Chai YM, Li X, Shang X, Liu YQ, Liu GG (2016) Crystallographic structure and morphology transformation of MnO2 nanorods as efficient electrocatalysts for oxygen evolution reaction. J Electrochem Soc 163:H67–H73CrossRefGoogle Scholar
  20. Jiang J, Zhang CH, Ai LH (2016) Hierarchical iron nickel oxide architectures derived from metal-organic frameworks as efficient electrocatalysts for oxygen evolution reaction. Electrochim Acta 208:17–24CrossRefGoogle Scholar
  21. Koper MTM (2011) Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis. J Electroanal Chem 660:254–260CrossRefGoogle Scholar
  22. Kunhiraman AK, Ramasamy M (2017) Nickel-doped nanobelt structured molybdenum oxides as electrocatalysts for electrochemical hydrogen evolution reaction. J Nanopart Res 19:203CrossRefGoogle Scholar
  23. Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y (2012) Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett 3:399–404CrossRefGoogle Scholar
  24. Li P, Jin Z, Xiao D (2014) A one-step synthesis of Co-P-B/rGO at room temperature with synergistically enhanced electrocatalytic activity in neutral solution. J Mater Chem A 2:18420–18427CrossRefGoogle Scholar
  25. Liang HF, Meng F, Caban-Acevedo M, Li LS, Forticaux A, Xiu LC, Wang ZC (2015) Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett 15:1421–1427CrossRefGoogle Scholar
  26. Lin XQ, Li XZ, Li F, Fang YY, Tian M, An XC (2016) Precious-metal-free Co–Fe–Ox coupled nitrogen-enriched porous carbon nanosheets derived from Schiff-base porous polymers as superior electrocatalysts for the oxygen evolution reaction. J Mater Chem A 4:6505–6512CrossRefGoogle Scholar
  27. Liu B, Shioyama H, Akita T, Xu Q (2008) Metal-organic framework as a template for porous carbon synthesis. J Am Chem Soc 130:5390–5391CrossRefGoogle Scholar
  28. Liu Y, Li J, Li F, Li WZ, Yang HD, Zhang XY, Liu YS, Ma JT (2016a) A facile preparation of CoFe2O4 nanoparticles on polyaniline-functionalised carbon nanotubes as enhanced catalysts for the oxygen evolution reaction. J Mater Chem A 4:4472–4478CrossRefGoogle Scholar
  29. Liu G, Wang KF, Gao XS, He DY, Li JP (2016b) Fabrication of mesoporous NiFe2O4 nanorods as efficient oxygen evolution catalyst for water splitting. Electrochim Acta 211:871–878CrossRefGoogle Scholar
  30. Liu G, Gao XS, Wang KF, He DY, Li JP (2017) Mesoporous nickel–iron binary oxide nanorods for efficient electrocatalytic water oxidation. Nano Res 10:2096–2105CrossRefGoogle Scholar
  31. Louie MW, Bell AT (2013) An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J Am Chem Soc 135:12329–12337CrossRefGoogle Scholar
  32. Lu XY, Zhao C (2015) Electrodeposition of hierarchically structured three-dimensional nickel–iron electrodes for efficient oxygen evolution at high current densities. Nat Commun 6:6616CrossRefGoogle Scholar
  33. Lu WG, An DQ, Kal TA (2012) A highly porous and robust (3, 3, 4)-connected metal–organic framework assembled with a 90° bridging-angle embedded octacarboxylate ligand. Angew Chem Int Ed 51:1580–1584CrossRefGoogle Scholar
  34. Lu XF, Liao PQ, Wang JW, Wu JX, Chen XW, He CT, Li GR, Chen XM (2016) An alkaline-stable, metal hydroxide mimicking metal–organic framework for efficient electrocatalytic oxygen evolution. J Am Chem Soc 138:8336–8339CrossRefGoogle Scholar
  35. Ma TY, Dai S, Jaroniec M, Qiao SZ (2014) Metal–organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J Am Chem Soc 136:13925–13931CrossRefGoogle Scholar
  36. Masahiro S, Eberhard S (1998) Electrochemical properties of polyoxometalates as electrocatalysts. Chem Rev 98:219–237CrossRefGoogle Scholar
  37. Petrykin V, Macounova K, Shlyakhtin OA, Krtil P (2010) Tailoring the selectivity for electrocatalytic oxygen evolution on ruthenium oxides by zinc substitution. Angew Chem Int Ed 49:4813–4815CrossRefGoogle Scholar
  38. Polunin RA, Kolotilov SV, Kiskin MA, Cador O, Golhen S, Shvets OV, Ouahab L, Dobrokhotova ZV, Ovcharenko VI, Eremenko IL, Novotortsev VM, Pavlishchuk VV (2011) Structural flexibility and sorption properties of 2D porous coordination polymers constructed from trinuclear heterometallic pivalates and 4, 4′-bipyridine. Eur J Inorg Chem 2011(32):4985–4992CrossRefGoogle Scholar
  39. Polunin RA, Kiskin MA, Cador O, Kolotilov SV (2012) Coordination polymers based on trinuclear heterometallic pivalates and polypyridines: synthesis, structure, sorption and magnetic properties. Inorg Chim Acta 380:201–210CrossRefGoogle Scholar
  40. Shi W-W, Wang ZG, Fu YQ (2017) Mechanical bending induced catalytic activity enhancement of monolayer 1 T’-MoS2 for hydrogen evolution reaction. J Nanopart Res 19:296CrossRefGoogle Scholar
  41. Tian T, Ai L, Jiang J (2015) Metal-organic framework-derived nickel phosphides as efficient electrocatalysts toward sustainable hydrogen generation from water splitting. RSC Adv 5:10290–10295CrossRefGoogle Scholar
  42. Walter MG, Warren EL, Mckone JR, Boettcher SW, Mi QX, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110:6446–6473CrossRefGoogle Scholar
  43. Wu CD, Hu AG, Zhang L, Lin WB (2005) A homochiral porous metal–organic framework for highly enantioselective heterogeneous asymmetric catalysis. J Am Chem Soc 127:8940–8941CrossRefGoogle Scholar
  44. Wu HB, Xia BY, Yu L, Yu XY, Lou XW (2015) Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nat Commun 6:6512CrossRefGoogle Scholar
  45. Xia BY, Yan Y, Li N, Wu HB Lou XW, Wang X (2016) A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat Energy 1:15006–15015CrossRefGoogle Scholar
  46. Yang Y, Fei HL, Ruan GD, Xiang CS, Tour JM (2014a) Efficient electrocatalytic oxygen evolution on amorphous nickel–cobalt binary oxide nanoporous layers. ACS Nano 8:9518–9523CrossRefGoogle Scholar
  47. Yang Q, Li T, Lu Z, Sun X, Liu J (2014b) Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction. Nano 6:11789–11794Google Scholar
  48. Yang J, Yu C, Liang SX, Li SF, Huang HW, Han XT, Zhao CT, Song XD, Hao C, Ajayan PM, Qiu JS (2016) Bridging of ultrathin NiCo2O4 nanosheets and graphene with polyaniline: a theoretical and experimental study. Chem Mater 28:5855–5863CrossRefGoogle Scholar
  49. Yang HD, Liu Y, Luo S, Zhao ZM, Wang X, Luo YT, Wang ZX, Jin J, Ma JT (2017) Lateral-size-mediated efficient oxygen evolution reaction: insights into the atomically thin quantum dot structure of NiFe2O4. ACS Catal 7:5557–5567CrossRefGoogle Scholar
  50. You B, Jiang N, Sheng M, Gul S, Yano J, Sun Y (2015) High performance overall water splitting electrocatalysts derived from cobalt-based metal-organic frameworks. Chem Mater 27:7636–7642CrossRefGoogle Scholar
  51. Yu XW, Yang P, Chen S, Zhang M, Shi GQ (2016) NiFe alloy protected silicon photoanode for efficient water splitting. Adv Energy Mater 7:1601805CrossRefGoogle Scholar
  52. Zhang GQ, Li YF, Zhou YF, Yang FG (2016) NiFe layered-double-hydroxide-derived NiO-NiFe2O4/reduced graphene oxide architectures for enhanced electrocatalysis of alkaline water splitting. ChemElectroChem 13:1927–1936CrossRefGoogle Scholar
  53. Zhang J, Hao JH, Ma QL, Li CQ, Liu YS, Li BJ, Liu ZY (2017) Polyvinylpyrrolidone stabilized-Ru nanoclusters loaded onto reduced graphene oxide as high active catalyst for hydrogen evolution. J Nanopart Res 19:227CrossRefGoogle Scholar
  54. Zou RQ, Sakurai H, Xu Q (2006) Preparation, adsorption properties, and catalytic activity of 3D porous metal–organic frameworks composed of cubic building blocks and alkali-metal ions. Angew Chem Int Ed 45:2542–2546CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical EngineeringHenan UniversityHenanChina
  2. 2.Division of Materials for Special Environments, Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal ResearchChinese Academy of SciencesShenyangChina

Personalised recommendations