Skip to main content
Log in

Protein extraction and cytotoxicity abilities of colloidal gold-coated silica hybrid nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Monodisperse non-hybrid silica and hybrid colloidal silica of ≤ 200 nm decorated with small Au nanoparticles (NPs) were synthesized in a simple single-step method. Non-hybrid silica NPs were synthesized in the absence and presence of different twin tail cationic surfactants, while tiny Au NPs were grown under in situ reaction conditions on non-hybrid silica synthesized previously by using cationic dextran. Bio-applicability and cytotoxicity of both hybrid as well as non-hybrid silica NPs were tested by using them for the extraction of protein fractions from complex aqueous protein solutions and treating them with blood cells, respectively. Both non-hybrid and hybrid silica NPs demonstrate excellent ability to extract proteins fractions predominantly of relatively low molecular masses, i.e., ~ 80 kDa. Extraction preferences between both kinds of silica became prominent when predominantly hydrophobic proteins such zein and rice proteins were used rather than mainly polar protein like BSA. Applicability for more complex biological fluid like serum indicated the competitive extractions among strongly versus weakly bound proteins. With significant bearing in in vivo conditions, hybrid silica was potentially toxic towards the blood cells in comparison to non-hybrid silica. It stems from the collective interactions of silica as well as nanometallic surfaces of Au NPs to interact with the blood cells causing hemolysis and hence may not be the suitable vehicles for drug release in systemic circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aggarwal R, Khullar P, Mandial D, Mahal A, Ahluwalia GK, Bakshi MS (2017) Bipyridinium and imidazolium ionic liquids for nanomaterials synthesis: PH effect, phase transfer behavior, and protein extraction. ACS Sustain Chem Eng 5:7859–7870

    Article  Google Scholar 

  • Ahluwalia, G. K., 2017. Applications of chalcogenides: S, Se and Te. Chapter 3: nanostructured chalcogenides. ISBN 978-3-319-41188-0

  • Bakshi MS (2009) A simple method of superlattice formation: step-by-step evaluation of crystal growth of gold nanoparticles through seed-growth method. Langmuir 25:12697–12705

    Article  Google Scholar 

  • Bakshi MS (2016) How surfactants control crystal growth of nanomaterials. Cryst Growth Des 16:1104–1133

    Article  Google Scholar 

  • Bakshi MS (2017) Nanotoxicity in systemic circulation and wound healing. Chem Res Toxicol 30:1253–1274

    Article  Google Scholar 

  • Barrán-Berdón AL, Pozzi D, Caracciolo G, Capriotti AL, Caruso G, Cavaliere C, Riccioli A, Palchetti S, Laganà A (2013) Time evolution of nanoparticle-protein corona in human plasma: relevance for targeted drug delivery. Langmuir 29:6485–6494

    Article  Google Scholar 

  • Cabra, V.; Arreguin, R.; Galvez, A.; Quirasco, M.; Vazquez-duhalt, R.,Farres, A 2005. Characterization of a 19 kDa α-zein of high purity. J. Agric. Food Chem., 53, 725–729

  • Cárdenas B, Sánchez-Obrero G, Madueño R, Sevilla JM, Blázquez M, Pineda T (2014) Influence of the global charge of the protein on the stability of lysozyme–AuNP bioconjugates. J Phys Chem C 118:22274–22283

    Article  Google Scholar 

  • Chen G, Xie Y, Peltier R, Lei H, Wang P, Chen J, Hu Y, Wang F, Yao X, Sun H (2016) Peptide-decorated gold nanoparticles as functional nano-capping agent of mesoporous silica container for targeting drug delivery. ACS Appl Mater Interfaces 8:11204–11209

    Article  Google Scholar 

  • Chen X, Huang L, Li Q (1997) Hydrothermal transformation and characterization of porous silica templated by surfactants. J Phys Chem B 101:8460–8467

    Article  Google Scholar 

  • Chen YS, Frey W, Kim S, Kruizinga P, Homan K, Emelianov S (2011) Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett 11:348–354

    Article  Google Scholar 

  • Chen Y, Chen H, Zeng D, Tian Y, Chen F, Feng J, Shi J (2010) Core/shell structured hollow mesoporous nanocapsules: a potential platform for simultaneous cell imaging and anticancer drug delivery. ACS Nano 4:6001–6013

    Article  Google Scholar 

  • Clemments AM, Botella P, Landry CC (2015) Protein adsorption from biofluids on silica nanoparticles: corona analysis as a function of particle diameter and porosity. ACS Appl Mater Interfaces 7:21682–21689

    Article  Google Scholar 

  • Esen A (1987) A proposed nomenclature for the alcohol-soluble proteins (zeins) of maize (Zea mays L.). J Cereal Sci 5:117–128

    Article  Google Scholar 

  • Hartono SB, Qiao SZ, Jack K, Ladewig BP, Hao ZP, Lu GQ (2009) Improving adsorbent properties of cage-like ordered amine functionalized mesoporous silica with very large pores for bioadsorption. Langmuir 25(11):6413–6424

    Article  Google Scholar 

  • Haskouri, J. E.; Cabrera, S. l.; Caldes, M.; Guillem, C.; Latorre, J.; Beltran, A.; Beltran, D.; Marcos, M. D.; Amoros, P.,2002. Surfactant-assisted synthesis of the SBA-8 mesoporous silica by using nonrigid commercial alkyltrimethyl ammonium surfactants. Chem Mater, 14, 2637–2643

  • Hu Y, Noelck SJ, Drezek RA (2010) Symmetry breaking in gold-silica-gold multilayer nanoshells. ACS Nano 4:1521–1528

    Article  Google Scholar 

  • Iida S, Nishio T (1993) A rice (Oryza sativa L.) mutant having a low content of glutelin and high content of prolamine. Theor Appl Genet 87:374–378

    Article  Google Scholar 

  • Iwasaki T, Shibuya N, Suzuki T, Chikubu S (1975) Studies on rice protein part II. Albumins and globulins of regular rice and waxy rice (in Japanese). Nippon Shokuhin Kagaku Kogaku Kaishi 22:113–118

    Article  Google Scholar 

  • Kim T, Momin E, Choi J, Yuan K, Zaidi H, Kim J, Park M, Lee N, McMahon MT, Quinones-Hinojosa A, Bulte JWM, Hyeon T, Gilad AA (2011) Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells. J Am Chem Soc 133:2955–2961

    Article  Google Scholar 

  • Lin YS, Haynes CL (2010) Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J Am Chem Soc 132:4834–4842

    Article  Google Scholar 

  • Lin YS, Hurley KR, Haynes CL (2012) Critical considerations in the biomedical use of mesoporous silica nanoparticles. J Phys Chem Lett 3:364–374

    Article  Google Scholar 

  • Mahal A, Khullar P, Kumar H, Kaur G, Singh N, Jelokhani-Niaraki M, Bakshi MS (2013) Green chemistry of zein protein toward the synthesis of bioconjugated nanoparticles: understanding unfolding, fusogenic behavior, and hemolysis. ACS Sustain Chem Eng 1:627–639

    Article  Google Scholar 

  • Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Baldelli Bombelli F, Dawson KA (2011) Physical chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133:2525–2534

    Article  Google Scholar 

  • Nguyen KT, Zhao Y (2015) Engineered hybrid nanoparticles for on-demand diagnostics and therapeutics. Acc Chem Res 48:3016–3025

    Article  Google Scholar 

  • Ohishi K, Kasai M, Shimada A, Hatae K (2003) Effect of acetic acid added to cooking water on the dissolution of proteins and activation of protease in rice. J Agric Food Chem 51:4054–4059

    Article  Google Scholar 

  • Osterloh F, Hiramatsu H, Porter R, Guo T (2004) Alkanethiol-induced structural rearrangements in silica-gold core-shell-type nanoparticle clusters: an opportunity for chemical sensor engineering. Langmuir 20:5553–5558

    Article  Google Scholar 

  • Paulis JW (1981) Disulfide structures of zein proteins from corn endosperm. Cereal Chem 58:542–546

    Google Scholar 

  • Phonthammachai N, White TJ (2007) One-step synthesis of highly dispersed gold nanocrystals on silica spheres. Langmuir 23:11421–11424

    Article  Google Scholar 

  • Pol VG, Gedanken A, Calderon-Moreno J (2003) Deposition of gold nanoparticles on silica spheres: a sonochemical approach. Chem Mater 15:1111–1118

    Article  Google Scholar 

  • Roggers RA, Joglekar M, Valenstein JS, Trewyn BG (2014) Mimicking red blood cell lipid membrane to enhance the hemocompatibility of large-pore mesoporous silica. ACS Appl Mater Interfaces 6:1675–1681

    Article  Google Scholar 

  • Sakulkhu, U.; Mahmoudi, M.; Maurizi, L.; Salaklang, J.; Hofmann, H.,2014. Protein corona composition of superparamagnetic iron oxide nanoparticles with various physico-chemical properties and coatings. Sci. Rep., 4, Article No. 5020

  • Schlipf DM, Rankin SE, Knutson BL (2013) Pore-size dependent protein adsorption and protection from proteolytic hydrolysis in tailored mesoporous silica particles. ACS Appl Mater Interfaces 5:10111–10117

    Article  Google Scholar 

  • Singh Sodhi N, Singh N (2003) Morphological, thermal and rheological properties of starches separated from rice cultivars grown in India. Food Chem 80:99–108

    Article  Google Scholar 

  • Singh V, Khullar P, Dave PN, Kaur G, Bakshi MS (2013) Ecofriendly route to synthesize nanomaterials for biomedical applications: bioactive polymers on shape-controlled effects of nanomaterials under different reaction conditions. ACS Sustain Chem Eng 1:1417–1431

    Article  Google Scholar 

  • Soule, S.; Bulteau, A. L.; Faucher, S. p.; Haye, B.; Aime, C.; Allouche, J.; Dupin, J. C.; Lespes, G. t.; Coradin, T.; Martinez, H.,2016. Design and cellular fate of bioinspired Au-Ag nanoshells@hybrid silica nanoparticles. Langmuir, 32, 10073–10082

  • Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  • Sun, Z.; Deng, Y.; Wei, J.; Gu, D.; Tu, B.; Zhao, D.,2011. Hierarchically ordered macro-/mesoporous silica monolith: tuning macropore entrance size for size-selective adsorption of proteins. Chem Mater, 23, 2176–2184

  • Tanaka K, Sugimoto T, Ogawa M, Kasai Z (1980) Isolation and characterization of two types of protein bodies in the rice endosperm. Agric Biol Chem 44:1633–1639

    Google Scholar 

  • Tu J, Boyle AL, Friedrich H, Bomans PHH, Bussmann J, Sommerdijk NAJM, Jiskoot W, Kros A (2016) Mesoporous silica nanoparticles with large pores for the encapsulation and release of proteins. ACS Appl Mater Interfaces 8:32211–32219

    Article  Google Scholar 

  • Vogel N, Fernandez-Lopez C, Perez-Juste J, Liz-Marzan LM, Landfester K, Weiss CK (2012) Ordered arrays of gold nanostructures from interfacially assembled au@PNIPAM hybrid nanoparticles. Langmuir 28:8985–8993

    Article  Google Scholar 

  • Westcott SL, Oldenburg SJ, Lee TR, Halas NJ (1998) Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces. Langmuir 14:5396–5401

    Article  Google Scholar 

  • Wu, J.; Li, X.; Yan, Y.; Hu, Y.; Zhang, Y.; Tang, Y., 2013. Protein adsorption onto nanozeolite: effect of micropore openings. J Colloid Interface Sci, 406, 130–138

  • Xiong Y, Deng C, Zhang X, Yang P (2015) Designed synthesis of aptamer-immobilized magnetic mesoporous silica/au nanocomposites for highly selective enrichment and detection of insulin. ACS Appl Mater Interfaces 7:8451–8456

    Article  Google Scholar 

  • Xu H, Chen J, Birrenkott J, Zhao JX, Takalkar S, Baryeh K, Liu G (2014) Gold-nanoparticle-decorated silica Nanorods for sensitive visual detection of proteins. Anal Chem 86:7351–7359

    Article  Google Scholar 

  • Yamada H, Urata C, Higashitamori S, Aoyama Y, Yamauchi Y, Kuroda K (2014) Critical roles of cationic surfactants in the preparation of colloidal mesostructured silica nanoparticles: control of mesostructure, particle size, and dispersion. ACS Appl Mater Interfaces 6:3491–3500

    Article  Google Scholar 

  • Yamagata H, Sugimoto T, Tanaka K, Kasai Z (1982) Biosynthesis of storage proteins in developing rice seeds. Plant Physiol 70:1094–1100

    Article  Google Scholar 

  • Yasukuni, R.; Ouhenia-Ouadahi, K.; Boubekeur-Lecaque, L. l.; Felidj, N.; Maurel, F.; Metivier, R; Nakatani, K.; Aubard, J.; Grand, J.,2013. Silica-coated gold nanorod arrays for nanoplasmonics devices. Langmuir, 29, 12633–12637

  • Yeh YQ, Chen BC, Lin HP, Tang CY (2006) Synthesis of hollow silica spheres with mesostructured shell using cationic/anionic-neutral block copolymer ternary surfactants. Langmuir 22:6–9

    Article  Google Scholar 

  • Yu T, Malugin A, Ghandehari H (2011) Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano 5:5717–5728

    Article  Google Scholar 

  • Yuki Y, Kurokawa S, Kozuka-Hata H, Tokuhara D, Mejima M, Kuroda M, Oyama M, Nishimaki-Mogami T, Teshima R, Kiyono H (2016) Differential analyses of major allergen proteins in wild-type rice and rice producing a fragment of anti-rotavirus antibody. Regul Toxicol Pharmacol 76:128–136

    Article  Google Scholar 

  • Zeiderman MR, Morgan DE, Christein JD, Grizzle WE, McMasters KM, McNally LR (2016) Acidic PH-targeted chitosan-capped mesoporous silica coated gold nanorods facilitate detection of pancreatic tumors via multispectral optoacoustic tomography. ACS Biomater Sci Eng 2:1108–1120

    Article  Google Scholar 

  • Zeno WF, Hilt S, Risbud SH, Voss JC, Longo ML (2015) Spectroscopic characterization of structural changes in membrane scaffold proteins entrapped within mesoporous silica gel monoliths. ACS Appl Mater Interfaces 7:8640–8649

    Article  Google Scholar 

  • Zhang H, Dunphy DR, Jiang X, Meng H, Sun B, Tarn D, Xue M, Wang X, Lin S, Ji Z, Li R, Garcia FL, Yang J, Kirk ML, Xia T, Zink JI, Nel A, Brinker CJ (2012) Processing pathway dependence of amorphous silica nanoparticle toxicity: colloidal vs pyrolytic. J Am Chem Soc 134:15790–15804

    Article  Google Scholar 

  • Zhao Y, Sun X, Zhang G, Trewyn BG, Slowing II, Lin VS (2011) Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. ACS Nano 5:1366–1375

    Article  Google Scholar 

  • Zhou Z, Hartmann M (2013) Progress in enzyme immobilization in ordered mesoporous materials and related applications. Chem Soc Rev 42:3894–3912

    Article  Google Scholar 

  • Zhu F, Kale AV, Cheryan M (2007) Fractionation of zein by size exclusion chromatography. J Agric Food Chem 55:3843–3849

    Article  Google Scholar 

Download references

Acknowledgments

P.K. acknowledges the TEM studies done by SAIF Lab, Nehu, Shillong.

Funding

These studies were supported by the DST under Nanomission Research Project (Ref. No: SR/NM/NS-1057/2015(G)), New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poonam Khullar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

XRD patterns and other graphical data. This information is available free of charge via the Internet.

ESM 1

(PPTX 549 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tandon, L., Singh, V., Mandial, D. et al. Protein extraction and cytotoxicity abilities of colloidal gold-coated silica hybrid nanoparticles. J Nanopart Res 20, 102 (2018). https://doi.org/10.1007/s11051-018-4208-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4208-4

Keywords

Navigation