Synthesis of ordered Ni/NiO nanocables for electrochemical capacitor application

  • Junxia Wang
  • Jianwei Zhao
  • Lirong Qin
  • Binglin Zhao
  • Zhengyan Jiang
Research Paper
  • 47 Downloads

Abstract

Ordered Ni/NiO nanocables were fabricated by electrochemical deposition with the aid of an anodic aluminum oxide as a template, followed by annealing at high temperature. Their morphology and structure are characterized, and the results show that each nanocable has a Ni nanowire as the inner core and a coarse NiO layer as an outer shell. As electrode materials for pseudo-capacitors, the ordered Ni/NiO nanocables exhibit a specific capacitance of 398 mF cm−2 at 1 mA cm−2 and good cycling stability. The good electrochemical performance can be attributed to the special core-shell nanocable architecture, in which the Ni nanowire core plays the role of the metallic interconnect as well as fast electron transfer, while the thin NiO shell with a large surface area serves as the active materials.

Keywords

Nanocables Template method Nickel oxide Core-shell Supercapacitors Energy storage 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2018_4201_MOESM1_ESM.docx (120 kb)
ESM 1 (DOCX 120 kb)

References

  1. Bastakoti BP, Huang HS, Chen LC, Wu KCW, Yamauchi Y (2012) Block copolymer assisted synthesis of porous alpha-Ni(OH)2 microflowers with high surface areas as electrochemical pseudocapacitor materials. Chem Commun 48(73):9150–9152CrossRefGoogle Scholar
  2. Chai H, Chen X, Jia DZ, Bao SJ, Zhou WY (2012) Flower-like NiO structures: controlled hydrothermal synthesis and electrochemical characteristic. Mater Res Bull 47(12):3947–3951CrossRefGoogle Scholar
  3. Chen H, Zhou S, Wu L (2014) Porous nickel hydroxide manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials. ACS Appl Mater Inter 6(11):8621–8630CrossRefGoogle Scholar
  4. Chen M, Zhang J, Xia X, Qi M, Yin J, Chen Q (2016) Self-supported Ni decorated NiO nanoflake arrays as promising cathode materials of hybrid batteries. Mater Res Bull 76:113–117CrossRefGoogle Scholar
  5. Chen Y, Du L, Yang P, Sun P, Yu X, Mai W (2015a) Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole. J Power Sources 287:68–74CrossRefGoogle Scholar
  6. Chen Y, Wang Y, Sun P, Yang P, Du L, Mai W (2015b) Nickel oxide nanoflake-based bifunctional glass electrodes with superior cyclic stability for energy storage and electrochromic applications. J Mater Chem A 3(41):20614–20618CrossRefGoogle Scholar
  7. Das B, McGinnis SP (2000) Novel template-based semiconductor nanostructures and their applications. Appl Phys A Mater Sci Process 71(6):681–688CrossRefGoogle Scholar
  8. Duan CB, Zhao JW, Qin LR, Yang LJ, Zhou YC (2017) Ternary Ni-Co-Mo oxy-hydroxide nanoflakes grown on carbon cloth for excellent supercapacitor electrodes. Mater Lett 208:65–68CrossRefGoogle Scholar
  9. Dupont MF, Donne SW (2014) Nucleation and growth of electrodeposited manganese dioxide for electrochemical capacitors. Electrochim Acta 120:219–225CrossRefGoogle Scholar
  10. Gao T, Jelle BP (2013) Paraotwayite-type α-Ni(OH)2 nanowires: structural, optical, and electrochemical properties. J Phys Chem C 117(33):17294–17302CrossRefGoogle Scholar
  11. Ghodbane O, Pascal JL, Favier F (2009) Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl Mater Inter 1(5):1130–1139CrossRefGoogle Scholar
  12. Hwang SW, Hyun SH (2004) Capacitance control of carbon aerogel electrodes. J Non-Cryst Solids 347(1–3):238–245CrossRefGoogle Scholar
  13. Huang YG, Zhang XH, Chen XB, Wang HQ, Chen JR, Zhong XX, Li QY (2015) Electrochemical properties of MnO2-deposited TiO2 nanotube arrays 3d composite electrode for supercapacitors. Int J Hydrogen Energy 40(41):14331–14337CrossRefGoogle Scholar
  14. Jiang PC, Wang Q, Dai JF, Li WX, Wei ZQ (2017) Fabrication of NiO@Co3O4 core/shell nanofibres for high-performance supercapacitors. Mater Lett 188:69–72CrossRefGoogle Scholar
  15. Li J, Wang XY, Huang QH, Gamboa S, Sebastian PJ (2006) Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. J Power Sources 158(1):784–788CrossRefGoogle Scholar
  16. Liang K, Tang X, Hu W (2012) High-performance three-dimensional nanoporous NiO film as a supercapacitor electrode. J Mater Chem 22(22):11062–11067CrossRefGoogle Scholar
  17. Lien CH, Hu CC, Hsu CT, Wong DSH (2013) High-performance asymmetric supercapacitor consisting of Ni-Co-Cu oxy-hydroxide nanosheets and activated carbon. Electrochem Commun 34:323–326CrossRefGoogle Scholar
  18. Liu CM, Chen C, Tseng YC (2012) Core-shell Ni-NiO nano arrays for UV photodetection without an external bias. J Electrochem Soc 159(4):K78–K82CrossRefGoogle Scholar
  19. Liu J, Jiang J, Cheng C, Li H, Zhang J, Gong H, Fan HJ (2011) Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv Mater 23:2076–2081CrossRefGoogle Scholar
  20. Liu XM, Zhang XG, Fu SY (2006) Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors. Mater Res Bull 41(3):620–627CrossRefGoogle Scholar
  21. Liu Y, Fu N, Zhang G, Lu W, Zhou L, Huang H (2016) Ni@NiO core/shell dendrites for ultra-long cycle life electrochemical energy storage. J Mater Chem A 4:15049–15056CrossRefGoogle Scholar
  22. Lv J, Guo W, Liang T (2016) Synthesis of Co3O4@CoMoO4 core–shell architectures nanocomposites as high-performance supercapacitor electrode. J Electroanal Chem 783:250–257CrossRefGoogle Scholar
  23. Mastragostino M, Arbizzani C, Soavi F (2002) Conducting polymers as electrode materials in supercapacitors. Solid State Ionics 148(3–4):493–498CrossRefGoogle Scholar
  24. Nakamura R, Lee JG, Mori H, Nakajima H (2008) Oxidation behaviour of Ni nanoparticles and formation process of hollow NiO. Philos Mag 88(2):257–264CrossRefGoogle Scholar
  25. Oh M, Kim S (2012) Preparation and electrochemical characterization of polyaniline/activated carbon composites as an electrode material for supercapacitors. J Nanosci Nanotechnol 12(1):519–524CrossRefGoogle Scholar
  26. Pei L, Zhang X, Zhang L, Zhang Y, Xu Y (2016) Solvent influence on the morphology and supercapacitor performance of the nickel oxide. Mater Lett 162:238–241CrossRefGoogle Scholar
  27. Qin L, Zhao J, Guo Q, Yan Z, Mu F, Chen P, Li G (2013) Effect of length on the magnetic properties of Ni 300nm wide nanowires. Phys E 50:17–21CrossRefGoogle Scholar
  28. Salunkhe RR, Lin JJ, Malgras V, Dou SX, Kim JH, Yamauchi Y (2015) Large-scale synthesis of coaxial carbon nanotube/Ni(OH)(2) composites for asymmetric supercapacitor application. Nano Energy 11:211–218CrossRefGoogle Scholar
  29. Toupin M, Brousse T, Belanger D (2002) Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chem Mater 14(9):3946–3952CrossRefGoogle Scholar
  30. Wang XW, Yuan ZH, Fang BC (2011) Template-based synthesis and magnetic properties of Ni nanotube arrays with different diameters. Mater Chem Phys 125(1–2):1–4CrossRefGoogle Scholar
  31. Wang J, Zhang X, Wei Q, Lv H, Tian Y, Tong Z, Liu X, Hao J, Qu H, Zhao J, Li Y, Mai L (2016) 3d self-supported nanopine forest-like Co3O4@CoMoO4 core–shell architectures for high-energy solid state supercapacitors. Nano Energy 19:222–233CrossRefGoogle Scholar
  32. Wang Q, Wang X, Liu B, Yu G, Hou X, Chen D, Shen G (2013) NiCo2O4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors. J Mater Chem A 1(7):2468–2473CrossRefGoogle Scholar
  33. Whitman SR, Raja KS (2014) Formation and electrochemical characterization of anodic ZrO2-WO3 mixed oxide nanotubular arrays. Appl Surf Sci 303(3):406–418CrossRefGoogle Scholar
  34. Wu Q, Liu Y, Hu Z (2013) Flower-like NiO microspheres prepared by facile method as supercapacitor electrodes. J Solid State Electrochem 17(6):1711–1716CrossRefGoogle Scholar
  35. Yan ZK, Zhao JW, Qin LR, Mu F, Wang P, Feng XN (2013) Non-enzymatic hydrogen peroxide sensor based on a gold electrode modified with granular cuprous oxide nanowires. Microchim Acta 180(1–2):145–150CrossRefGoogle Scholar
  36. Yang PH, Li YZ, Lin ZY, Ding Y, Yue S, Wong CP, Cai X, Tan SZ, Mai WJ (2014) Worm-like amorphous MnO2 nanowires grown on textiles for high-performance flexible supercapacitors. J Mater Chem A 2:595–599CrossRefGoogle Scholar
  37. Zhang C, Qian L, Zhang K, Yuan S, Xiao J, Wang S (2015) Hierarchical porous Ni/NiO core-shells with superior conductivity for electrochemical pseudo-capacitors and glucose sensors. J Mater Chem A 3:10519–10525CrossRefGoogle Scholar
  38. Zhang G, Li W, Xie K, Yu F, Huang H (2013) A one-step and binder-free method to fabricate hierarchical nickel-based supercapacitor electrodes with excellent performance. Adv Funct Mater 23(29):3675–3681CrossRefGoogle Scholar
  39. Zhou H, Han G, Xiao Y, Chang Y, Zhai H (2014) Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors. J Power Sources 263:259–267CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Junxia Wang
    • 1
  • Jianwei Zhao
    • 1
  • Lirong Qin
    • 1
  • Binglin Zhao
    • 1
  • Zhengyan Jiang
    • 1
  1. 1.School of Physical Science and TechnologySouthwest UniversityChongqingPeople’s Republic of China

Personalised recommendations