Advertisement

Synthesis of ordered Ni/NiO nanocables for electrochemical capacitor application

  • Junxia Wang
  • Jianwei Zhao
  • Lirong Qin
  • Binglin Zhao
  • Zhengyan Jiang
Research Paper
  • 161 Downloads

Abstract

Ordered Ni/NiO nanocables were fabricated by electrochemical deposition with the aid of an anodic aluminum oxide as a template, followed by annealing at high temperature. Their morphology and structure are characterized, and the results show that each nanocable has a Ni nanowire as the inner core and a coarse NiO layer as an outer shell. As electrode materials for pseudo-capacitors, the ordered Ni/NiO nanocables exhibit a specific capacitance of 398 mF cm−2 at 1 mA cm−2 and good cycling stability. The good electrochemical performance can be attributed to the special core-shell nanocable architecture, in which the Ni nanowire core plays the role of the metallic interconnect as well as fast electron transfer, while the thin NiO shell with a large surface area serves as the active materials.

Keywords

Nanocables Template method Nickel oxide Core-shell Supercapacitors Energy storage 

Notes

Funding

This work was supported by the National Natural Science Foundation of China (11204246) and Chongqing Research Program of Basic Research and Frontier Technology (cstc2016jcyjA0125).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2018_4201_MOESM1_ESM.docx (120 kb)
ESM 1 (DOCX 120 kb)

References

  1. Bastakoti BP, Huang HS, Chen LC, Wu KCW, Yamauchi Y (2012) Block copolymer assisted synthesis of porous alpha-Ni(OH)2 microflowers with high surface areas as electrochemical pseudocapacitor materials. Chem Commun 48(73):9150–9152CrossRefGoogle Scholar
  2. Chai H, Chen X, Jia DZ, Bao SJ, Zhou WY (2012) Flower-like NiO structures: controlled hydrothermal synthesis and electrochemical characteristic. Mater Res Bull 47(12):3947–3951CrossRefGoogle Scholar
  3. Chen H, Zhou S, Wu L (2014) Porous nickel hydroxide manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials. ACS Appl Mater Inter 6(11):8621–8630CrossRefGoogle Scholar
  4. Chen M, Zhang J, Xia X, Qi M, Yin J, Chen Q (2016) Self-supported Ni decorated NiO nanoflake arrays as promising cathode materials of hybrid batteries. Mater Res Bull 76:113–117CrossRefGoogle Scholar
  5. Chen Y, Du L, Yang P, Sun P, Yu X, Mai W (2015a) Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole. J Power Sources 287:68–74CrossRefGoogle Scholar
  6. Chen Y, Wang Y, Sun P, Yang P, Du L, Mai W (2015b) Nickel oxide nanoflake-based bifunctional glass electrodes with superior cyclic stability for energy storage and electrochromic applications. J Mater Chem A 3(41):20614–20618CrossRefGoogle Scholar
  7. Das B, McGinnis SP (2000) Novel template-based semiconductor nanostructures and their applications. Appl Phys A Mater Sci Process 71(6):681–688CrossRefGoogle Scholar
  8. Duan CB, Zhao JW, Qin LR, Yang LJ, Zhou YC (2017) Ternary Ni-Co-Mo oxy-hydroxide nanoflakes grown on carbon cloth for excellent supercapacitor electrodes. Mater Lett 208:65–68CrossRefGoogle Scholar
  9. Dupont MF, Donne SW (2014) Nucleation and growth of electrodeposited manganese dioxide for electrochemical capacitors. Electrochim Acta 120:219–225CrossRefGoogle Scholar
  10. Gao T, Jelle BP (2013) Paraotwayite-type α-Ni(OH)2 nanowires: structural, optical, and electrochemical properties. J Phys Chem C 117(33):17294–17302CrossRefGoogle Scholar
  11. Ghodbane O, Pascal JL, Favier F (2009) Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl Mater Inter 1(5):1130–1139CrossRefGoogle Scholar
  12. Hwang SW, Hyun SH (2004) Capacitance control of carbon aerogel electrodes. J Non-Cryst Solids 347(1–3):238–245CrossRefGoogle Scholar
  13. Huang YG, Zhang XH, Chen XB, Wang HQ, Chen JR, Zhong XX, Li QY (2015) Electrochemical properties of MnO2-deposited TiO2 nanotube arrays 3d composite electrode for supercapacitors. Int J Hydrogen Energy 40(41):14331–14337CrossRefGoogle Scholar
  14. Jiang PC, Wang Q, Dai JF, Li WX, Wei ZQ (2017) Fabrication of NiO@Co3O4 core/shell nanofibres for high-performance supercapacitors. Mater Lett 188:69–72CrossRefGoogle Scholar
  15. Li J, Wang XY, Huang QH, Gamboa S, Sebastian PJ (2006) Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor. J Power Sources 158(1):784–788CrossRefGoogle Scholar
  16. Liang K, Tang X, Hu W (2012) High-performance three-dimensional nanoporous NiO film as a supercapacitor electrode. J Mater Chem 22(22):11062–11067CrossRefGoogle Scholar
  17. Lien CH, Hu CC, Hsu CT, Wong DSH (2013) High-performance asymmetric supercapacitor consisting of Ni-Co-Cu oxy-hydroxide nanosheets and activated carbon. Electrochem Commun 34:323–326CrossRefGoogle Scholar
  18. Liu CM, Chen C, Tseng YC (2012) Core-shell Ni-NiO nano arrays for UV photodetection without an external bias. J Electrochem Soc 159(4):K78–K82CrossRefGoogle Scholar
  19. Liu J, Jiang J, Cheng C, Li H, Zhang J, Gong H, Fan HJ (2011) Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv Mater 23:2076–2081CrossRefGoogle Scholar
  20. Liu XM, Zhang XG, Fu SY (2006) Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors. Mater Res Bull 41(3):620–627CrossRefGoogle Scholar
  21. Liu Y, Fu N, Zhang G, Lu W, Zhou L, Huang H (2016) Ni@NiO core/shell dendrites for ultra-long cycle life electrochemical energy storage. J Mater Chem A 4:15049–15056CrossRefGoogle Scholar
  22. Lv J, Guo W, Liang T (2016) Synthesis of Co3O4@CoMoO4 core–shell architectures nanocomposites as high-performance supercapacitor electrode. J Electroanal Chem 783:250–257CrossRefGoogle Scholar
  23. Mastragostino M, Arbizzani C, Soavi F (2002) Conducting polymers as electrode materials in supercapacitors. Solid State Ionics 148(3–4):493–498CrossRefGoogle Scholar
  24. Nakamura R, Lee JG, Mori H, Nakajima H (2008) Oxidation behaviour of Ni nanoparticles and formation process of hollow NiO. Philos Mag 88(2):257–264CrossRefGoogle Scholar
  25. Oh M, Kim S (2012) Preparation and electrochemical characterization of polyaniline/activated carbon composites as an electrode material for supercapacitors. J Nanosci Nanotechnol 12(1):519–524CrossRefGoogle Scholar
  26. Pei L, Zhang X, Zhang L, Zhang Y, Xu Y (2016) Solvent influence on the morphology and supercapacitor performance of the nickel oxide. Mater Lett 162:238–241CrossRefGoogle Scholar
  27. Qin L, Zhao J, Guo Q, Yan Z, Mu F, Chen P, Li G (2013) Effect of length on the magnetic properties of Ni 300nm wide nanowires. Phys E 50:17–21CrossRefGoogle Scholar
  28. Salunkhe RR, Lin JJ, Malgras V, Dou SX, Kim JH, Yamauchi Y (2015) Large-scale synthesis of coaxial carbon nanotube/Ni(OH)(2) composites for asymmetric supercapacitor application. Nano Energy 11:211–218CrossRefGoogle Scholar
  29. Toupin M, Brousse T, Belanger D (2002) Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chem Mater 14(9):3946–3952CrossRefGoogle Scholar
  30. Wang XW, Yuan ZH, Fang BC (2011) Template-based synthesis and magnetic properties of Ni nanotube arrays with different diameters. Mater Chem Phys 125(1–2):1–4CrossRefGoogle Scholar
  31. Wang J, Zhang X, Wei Q, Lv H, Tian Y, Tong Z, Liu X, Hao J, Qu H, Zhao J, Li Y, Mai L (2016) 3d self-supported nanopine forest-like Co3O4@CoMoO4 core–shell architectures for high-energy solid state supercapacitors. Nano Energy 19:222–233CrossRefGoogle Scholar
  32. Wang Q, Wang X, Liu B, Yu G, Hou X, Chen D, Shen G (2013) NiCo2O4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors. J Mater Chem A 1(7):2468–2473CrossRefGoogle Scholar
  33. Whitman SR, Raja KS (2014) Formation and electrochemical characterization of anodic ZrO2-WO3 mixed oxide nanotubular arrays. Appl Surf Sci 303(3):406–418CrossRefGoogle Scholar
  34. Wu Q, Liu Y, Hu Z (2013) Flower-like NiO microspheres prepared by facile method as supercapacitor electrodes. J Solid State Electrochem 17(6):1711–1716CrossRefGoogle Scholar
  35. Yan ZK, Zhao JW, Qin LR, Mu F, Wang P, Feng XN (2013) Non-enzymatic hydrogen peroxide sensor based on a gold electrode modified with granular cuprous oxide nanowires. Microchim Acta 180(1–2):145–150CrossRefGoogle Scholar
  36. Yang PH, Li YZ, Lin ZY, Ding Y, Yue S, Wong CP, Cai X, Tan SZ, Mai WJ (2014) Worm-like amorphous MnO2 nanowires grown on textiles for high-performance flexible supercapacitors. J Mater Chem A 2:595–599CrossRefGoogle Scholar
  37. Zhang C, Qian L, Zhang K, Yuan S, Xiao J, Wang S (2015) Hierarchical porous Ni/NiO core-shells with superior conductivity for electrochemical pseudo-capacitors and glucose sensors. J Mater Chem A 3:10519–10525CrossRefGoogle Scholar
  38. Zhang G, Li W, Xie K, Yu F, Huang H (2013) A one-step and binder-free method to fabricate hierarchical nickel-based supercapacitor electrodes with excellent performance. Adv Funct Mater 23(29):3675–3681CrossRefGoogle Scholar
  39. Zhou H, Han G, Xiao Y, Chang Y, Zhai H (2014) Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors. J Power Sources 263:259–267CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Junxia Wang
    • 1
  • Jianwei Zhao
    • 1
  • Lirong Qin
    • 1
  • Binglin Zhao
    • 1
  • Zhengyan Jiang
    • 1
  1. 1.School of Physical Science and TechnologySouthwest UniversityChongqingPeople’s Republic of China

Personalised recommendations