A historical review and bibliometric analysis of nanoparticles toxicity on algae

Review
  • 58 Downloads

Abstract

With growing concerns about the toxicity of nanoparticles (NPs) to aquatic systems, a number of toxicity studies about different NPs to algae have been reported. Based on Science Citation Index Expanded (SCI-Expanded), a bibliometric and network analysis of research outputs was carried out to analyze the global research situation and trends of NP toxicity to algae from 2006 to 2017. The results indicate that annual publication outputs increased rapidly over the past decade. China was the most high-publishing country accounting for 19.8% of the total publications, followed by the USA (17.1%). The USA and most European countries like England, Norway, Denmark, and Switzerland played major roles in the collaboration network. Swiss Federal Institute of Aquatic Science and Technology contributed the most publications (19) and total citations (1708). Furthermore, Ag NPs and TiO2 NPs and Pseudokirchneriella subcapitata and Desmodesmus subspicatus were the most common studied NPs and algae, respectively. In addition, the overview of current research and the research tendency about the toxicity of single NPs and interactions between NPs and environmental contaminants to algae were analyzed and summarized with a timeline. The historical review about NP toxicity on algae and a bibliometric analysis of the publications give a global view on future research and identify potential opportunities and challenges.

Graphical abstract

Keywords

Nanoparticles Toxicity Algae SCI-Expanded Bibliometric 

Notes

Acknowledgements

This work was supported by Natural Science Foundation of China (21776224) and National Water Pollution Control and Treatment Key Technologies RD Program (2015ZX07406-001).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Akhil K, Khan SS (2017) Effect of humic acid on the toxicity of bare and capped ZnO nanoparticles on bacteria, algal and crustacean systems. J Photochem Photobiol B Biol 167:136–149.  https://doi.org/10.1016/j.jphotobiol.2016.12.010 CrossRefGoogle Scholar
  2. Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468.  https://doi.org/10.1016/j.scitotenv.2008.10.053 CrossRefGoogle Scholar
  3. Baltussen A, Kindler CH (2004) Citation classics in anesthetic journals. Anesth Analg 98:443–451.  https://doi.org/10.1213/01.ane.0000096185.13474.0a CrossRefGoogle Scholar
  4. Baun A, Sorensen SN, Rasmussen RF, Hartmann NB, Koch CB (2008) Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C-60. Aquat Toxicol 86:379–387.  https://doi.org/10.1016/j.aquatox.2007.11.019 CrossRefGoogle Scholar
  5. Behrenfeld MJ, O’Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:752–755.  https://doi.org/10.1038/nature05317 CrossRefGoogle Scholar
  6. Bennett SW, Adeleye A, Ji ZX, Keller AA (2013) Stability, metal leaching, photoactivity and toxicity in freshwater systems of commercial single wall carbon nanotubes. Water Res 47:4074–4085.  https://doi.org/10.1016/j.watres.2012.12.039 CrossRefGoogle Scholar
  7. Bessar H, Venditti I, Benassi L, Vaschieri C, Azzoni P, Pellacani G, Magnoni C, Botti E, Casagrande V, Federici M, Costanzo A, Fontana L, Testa G, Mostafa FF, Ibrahim SA, Russo MV, Fratoddi I (2016) Functionalized gold nanoparticles for topical delivery of methotrexate for the possible treatment of psoriasis. Colloid Surf B 141:141–147.  https://doi.org/10.1016/j.colsurfb.2016.01.021 CrossRefGoogle Scholar
  8. Blaise C, Gagne F, Ferard JF, Eullaffroy P (2008) Ecotoxicity of selected nano-materials to aquatic organisms. Environ Toxicol 23:591–598.  https://doi.org/10.1002/tox.20402 CrossRefGoogle Scholar
  9. Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87:1181–1200.  https://doi.org/10.1007/s00204-013-1079-4 CrossRefGoogle Scholar
  10. Booth A, Størseth T, Altin D, Fornara A, Ahniyaz A, Jungnickel H, Laux P, Luch A, Sørensen L (2015) Freshwater dispersion stability of PAA-stabilised-cerium-oxide nanoparticles and toxicity towards Pseudokirchneriella subcapitata. Sci Total Environ 505:596–605.  https://doi.org/10.1016/j.scitotenv.2014.10.010 CrossRefGoogle Scholar
  11. Botta C, Labille J, Auffan M, Borschneck D, Miche H, Cabié M, Masion A, Rose J, Bottero JY (2011) TiO2-based nanoparticles released in water from commercialized sunscreens in a life-cycle perspective: structures and quantities. Environ Pollut 159:1543–1548.  https://doi.org/10.1016/j.envpol.2011.03.003 CrossRefGoogle Scholar
  12. Bouldin JL, Ingle TM, Sengupta A, Alexander R, Hannigan RE, Buchanan RA (2008) Aqueous toxicity and food chain transfer of quantum dots (TM) in freshwater algae and Ceriodaphnia dubia. Environ Toxicol Chem 27:1958–1963.  https://doi.org/10.1897/07-637.1 CrossRefGoogle Scholar
  13. Cerrillo C, Barandika G, Igartua A, Areitioaurtena O, Mendoza G (2016) Towards the standardization of nanoecotoxicity testing: natural organic matter ‘camouflages’ the adverse effects of TiO2 and CeO2 nanoparticles on green microalgae. Sci Total Environ 543:95–104.  https://doi.org/10.1016/j.scitotenv.2015.10.137 CrossRefGoogle Scholar
  14. Chen JY, Qian Y, Li HR, Cheng YH, Zhao MR (2015) The reduced bioavailability of copper by nano-TiO2 attenuates the toxicity to Microcystis aeruginosa. Environ Sci Pollut Res 22:12422–12429.  https://doi.org/10.1007/s11356-015-4492-9 Google Scholar
  15. Chen SZ, Hao X, Liang X, Zhang Q, Zhang C, Zhou G, Shen S, Jia G, Zhang J (2016) Inorganic nanomaterials as carriers for drug delivery. J Biomed Nanotechnol 12:1–27.  https://doi.org/10.1166/jbn.2016.2122 CrossRefGoogle Scholar
  16. Chen XJ, Lu RR, Liu P, Li X (2017) Effects of Nano-TiO2 on Chlamydomonas reinhardtii cell surface under UV, natural light conditions. J Wuhan Univ Technol Mat Sci Ed 32:217–222.  https://doi.org/10.1007/s11595-017-1583-0 CrossRefGoogle Scholar
  17. Clement L, Hurel C, Marmier N (2013) Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants—effects of size and crystalline structure. Chemosphere 90:1083–1090.  https://doi.org/10.1016/j.chemosphere.2012.09.013 CrossRefGoogle Scholar
  18. Dalai S, Pakrashi S, Bhuvaneshwari M, Iswarya V, Chandrasekaran N, Mukherjee A (2014) Toxic effect of Cr(VI) in presence of n-TiO2 and n-Al2O3 particles towards freshwater microalgae. Aquat Toxicol 146:28–37.  https://doi.org/10.1016/j.aquatox.2013.10.029 CrossRefGoogle Scholar
  19. Das P, Metcalfe CD, Xenopoulos MA (2014) Interactive effects of silver nanoparticles and phosphorus on phytoplankton growth in natural waters. Environ Sci Technol 48:4573–4580.  https://doi.org/10.1021/es405039w CrossRefGoogle Scholar
  20. Dash A, Singh AP, Chaudhary BR, Singh SK, Dash D (2012) Effect of silver nanoparticles on growth of eukaryotic green algae. Nano-Micro Lett 4:158–165.  https://doi.org/10.3786/nml.v4i3.p158-165 CrossRefGoogle Scholar
  21. Deng XY, Cheng J, Hu XL, Wang L, Li D, Gao K (2017) Biological effects of TiO2 and CeO2 nanoparticles on the growth, photosynthetic activity, and cellular components of a marine diatom Phaeodactylum tricornutum. Sci Total Environ 575:87–96.  https://doi.org/10.1016/j.scitotenv.2016.10.003 CrossRefGoogle Scholar
  22. Dilnawaz F, Singh A, Mohanty C, Sahoo SK (2010) Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials 31:3694–3706.  https://doi.org/10.1016/j.biomaterials.2010.01.057 CrossRefGoogle Scholar
  23. Du ST, Zhang P, Zhang RR, Lu Q, Liu L, Bao XW, Liu HJ (2016) Reduced graphene oxide induces cytotoxicity and inhibits photosynthetic performance of the green alga Scenedesmus obliquus. Chemosphere 164:499–507.  https://doi.org/10.1016/j.chemosphere.2016.08.138 CrossRefGoogle Scholar
  24. Fahimnia B, Sarkis J, Davarzani H (2015) Green supply chain management: a review and bibliometric analysis. Int J Prod Econ 162:101–114.  https://doi.org/10.1016/j.ijpe.2015.01.003 CrossRefGoogle Scholar
  25. Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490.  https://doi.org/10.1021/es071445r CrossRefGoogle Scholar
  26. Fu HZ, Wang MH, Ho YS (2013) Mapping of drinking water research: a bibliometric analysis of research output during 1992-2011. Sci Total Environ 443:757–765.  https://doi.org/10.1016/j.scitotenv.2012.11.061 CrossRefGoogle Scholar
  27. Galletti A, Seo S, Joo SH, Su C, Blackwelder P (2016) Effects of titanium dioxide nanoparticles derived from consumer products on the marine diatom Thalassiosira pseudonana. Environ Sci Pollut Res 23:21113–21122.  https://doi.org/10.1007/s11356-016-7556-6 CrossRefGoogle Scholar
  28. Grillo R, Clemente Z, Oliveira JL, Campos EVR, Chalupe VC, Jonsson CM, Lima R, Sanches G, Nishisaka CS, Rosa AH, Oehlke K, Greiner R, Fraceto LF (2015) Chitosan nanoparticles loaded the herbicide paraquat: the influence of the aquatic humic substances on the colloidal stability and toxicity. J Hazard Mater 286:562–572.  https://doi.org/10.1016/j.jhazmat.2014.12.021 CrossRefGoogle Scholar
  29. Han G, Ghosh P, Rotello VM (2007) Functionalized gold nanoparticles for drug delivery. Nanomedicine 2:113–123.  https://doi.org/10.2217/17435889.2.1.113 CrossRefGoogle Scholar
  30. Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325.  https://doi.org/10.1007/s10646-008-0206-0 CrossRefGoogle Scholar
  31. Hazeem LJ, Bououdina M, Dewailly E, Slomianny C, Barras A, Coffinier Y, Szunerits S, Boukherroub R (2017) Toxicity effect of graphene oxide on growth and photosynthetic pigment of the marine alga Picochlorum sp during different growth stages. Environ Sci Pollut Res 24:4144–4152.  https://doi.org/10.1007/s11356-016-8174-z CrossRefGoogle Scholar
  32. Hirsch JE (2005) An index to quantify an individual's scientific research output. Proc Natl Acad Sci U S A 102:16569–16572.  https://doi.org/10.1073/pnas.0507655102 CrossRefGoogle Scholar
  33. Hu XG, Zhou M, Zhou QX (2015) Ambient water and visible-light irradiation drive changes in graphene morphology, structure, surface chemistry, aggregation, and toxicity. Environ Sci Technol 49:3410–3418.  https://doi.org/10.1021/es503003y CrossRefGoogle Scholar
  34. Huang TD, Sui MH, Yan X, Zhang X, Yuan Z (2016) Anti-algae efficacy of silver nanoparticles to Microcystis aeruginosa: influence of NOM, divalent cations, and pH. Colloid Surf A Physicochem Eng Asp 509:492–503.  https://doi.org/10.1016/j.colsurfa.2016.09.009 CrossRefGoogle Scholar
  35. Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles TiO2 on algae and daphnids. Environ Sci Pollut Res 13:225–232.  https://doi.org/10.1065/espr2006.06.311 CrossRefGoogle Scholar
  36. Iswarya V, Manivannan J, De A, Paul S, Roy R, Johnson JB, Kundu R, Chandrasekaran N, Mukherjee A, Mukherjee A (2016) Surface capping and size-dependent toxicity of gold nanoparticles on different trophic levels. Environ Sci Pollut Res 23:4844–4858.  https://doi.org/10.1007/s11356-015-5683-0 CrossRefGoogle Scholar
  37. Iswarya V, Johnson JB, Parashar A, Pulimi M, Chandrasekaran N, Mukherjee A (2017) Modulatory effects of Zn2+ ions on the toxicity of citrate-and PVP-capped gold nanoparticles towards freshwater algae, Scenedesmus obliquus. Environ Sci Pollut Res 24:3790–3801.  https://doi.org/10.1007/s11356-016-8131-x CrossRefGoogle Scholar
  38. Ivask A, Kurvet I, Kasemets K, Blinova I, Aruoja V, Suppi S, Vija H, Käkinen A, Titma T, Heinlaan M, Visnapuu M, Koller D, Kisand V, Kahru A (2014) Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS One 9:14.  https://doi.org/10.1371/journal.pone.0102108 CrossRefGoogle Scholar
  39. Jemec A, Kahru A, Potthoff A, Drobne D, Heinlaan M, Böhme S, Geppert M, Novak S, Schirmer K, Rekulapally R, Singh S, Aruoja V, Sihtmäe M, Juganson K, Käkinen A, Kühnel D (2016) An interlaboratory comparison of nanosilver characterisation and hazard identification: Harmonising techniques for high quality data. Environ Int 87:20–32.  https://doi.org/10.1016/j.envint.2015.10.014 CrossRefGoogle Scholar
  40. Ji J, Long ZF, Lin DH (2011) Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chem Eng J 170:525–530.  https://doi.org/10.1016/j.cej.2010.11.026 CrossRefGoogle Scholar
  41. Jiang HT, Wang TY, Wang LH, Sun CS, Jiang TY, Cheng G, Wang SL (2012) Development of an amorphous mesoporous TiO2 nanosphere as a novel carrier for poorly water-soluble drugs: effect of different crystal forms of TiO2 carriers on drug loading and release behaviors. Microporous Mesoporous Mater 153:124–130.  https://doi.org/10.1016/j.micromeso.2011.12.013 CrossRefGoogle Scholar
  42. Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119.  https://doi.org/10.1016/j.tox.2009.08.016 CrossRefGoogle Scholar
  43. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability and effects. Environ Toxicol Chem 27:1825–1851.  https://doi.org/10.1897/08-090.1 CrossRefGoogle Scholar
  44. Lei C, Zhang LQ, Yang K, Zhu LZ, Lin DH (2016) Toxicity of iron-based nanoparticles to green algae: effects of particle size, crystal phase, oxidation state and environmental aging. Environ Pollut 218:505–512.  https://doi.org/10.1016/j.envpol.2016.07.030 CrossRefGoogle Scholar
  45. Li XM, Schirmer K, Bernard L, Sigg L, Pillai S, Behra R (2015) Silver nanoparticle toxicity and association with the alga Euglena gracilis. Environ Sci Nano 2:594–602.  https://doi.org/10.1039/c5en00093a CrossRefGoogle Scholar
  46. Li XM, Zhou SY, Fan WH (2016) Effect of Nano-Al2O3 on the toxicity and oxidative stress of copper towards Scenedesmus obliquus. Int J Environ Res Public Health 13:15.  https://doi.org/10.3390/ijerph13060575 Google Scholar
  47. Lin S, Bhattacharya P, Rajapakse NC, Brune DE, Ke PC (2009) Effects of quantum dots adsorption on algal photosynthesis. J Phys Chem C 113:10962–10966.  https://doi.org/10.1021/jp904343s CrossRefGoogle Scholar
  48. Lin DH, Ji J, Long ZF, Yang K, Wu FC (2012) The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp. Water Res 46:4477–4487.  https://doi.org/10.1016/j.watres.2012.05.035 CrossRefGoogle Scholar
  49. Manzo S, Buono S, Rametta G, Miglietta M, Schiavo S, Di Francia G (2015) The diverse toxic effect of SiO2 and TiO2 nanoparticles toward the marine microalgae Dunaliella tertiolecta. Environ Sci Pollut Res 22:15941–15951.  https://doi.org/10.1007/s11356-015-4790-2 CrossRefGoogle Scholar
  50. Marty JJ, Oppenheim RC, Speiser P (1978) Nanoparticles - new colloidal drug delivery system. Pharm Acta Helv 53:17–23Google Scholar
  51. Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB (2006) Safe handling of nanotechnology. Nature 444:267–269.  https://doi.org/10.1038/444267a CrossRefGoogle Scholar
  52. Miao A-J, Schwehr KA, Xu C, Zhang S-J, Luo Z, Quigg A, Santschi PH (2009) The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ Pollut 157:3034–3041.  https://doi.org/10.1016/j.envpol.2009.05.047 CrossRefGoogle Scholar
  53. Morelli E, Cioni P, Posarelli M, Gabellieri E (2012) Chemical stability of CdSe quantum dots in seawater and their effects on a marine microalga. Aquat Toxicol 122:153–162.  https://doi.org/10.1016/j.aquatox.2012.06.012 CrossRefGoogle Scholar
  54. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008a) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386.  https://doi.org/10.1007/s10646-008-0214-0 CrossRefGoogle Scholar
  55. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008b) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964.  https://doi.org/10.1021/es801785m CrossRefGoogle Scholar
  56. Nogueira PFM, Nakabayashi D, Zucolotto V (2015) The effects of graphene oxide on green algae Raphidocelis subcapitata. Aquat Toxicol 166:29–35.  https://doi.org/10.1016/j.aquatox.2015.07.001 CrossRefGoogle Scholar
  57. OECD (2011) OECD guideline for testing of chemicals. Test No. 201: freshwater alga and cyanobacteria, growth inhibition test.  https://doi.org/10.1787/9789264069923-en
  58. Ohba N, Nakao K, Isashiki Y, Ohba A (2007) The 100 most frequently cited articles in ophthalmology journals. Arch Ophthalmol 125:952–960.  https://doi.org/10.1001/archopht.125.7.952 CrossRefGoogle Scholar
  59. Ostrowski AD, Martin T, Conti J, Hurt I, Harthorn BH (2009) Nanotoxicology: characterizing the scientific literature, 2000-2007. J Nanopart Res 11:251–257.  https://doi.org/10.1007/s11051-008-9579-5 CrossRefGoogle Scholar
  60. Oukarroum A, Bras S, Perreault F, Popovic R (2012) Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicol Environ Saf 78:80–85.  https://doi.org/10.1016/j.ecoenv.2011.11.012 CrossRefGoogle Scholar
  61. Oukarroum A, Samadani M, Dewez D (2014) Influence of pH on the toxicity of silver nanoparticles in the green alga Chlamydomonas acidophila. Water Air Soil Pollut 225:8.  https://doi.org/10.1007/s11270-014-2038-2 CrossRefGoogle Scholar
  62. Pakrashi S, Dalai S, Sneha RB, Chandrasekaran N, Mukherjee A (2012) A temporal study on fate of Al2O3 nanoparticles in a fresh water microcosm at environmentally relevant low concentrations. Ecotoxicol Environ Saf 84:70–77.  https://doi.org/10.1016/j.ecoenv.2012.06.015 CrossRefGoogle Scholar
  63. Petit AN, Eullaffroy P, Debenest T, Gagne F (2010) Toxicity of PAMAM dendrimers to Chlamydomonas reinhardtii. Aquat Toxicol 100:187–193.  https://doi.org/10.1016/j.aquatox.2010.01.019 CrossRefGoogle Scholar
  64. Piccapietra F, Allue CG, Sigg L, Behra R (2012) Intracellular silver accumulation in Chlamydomonas reinhardtii upon exposure to carbonate coated silver nanoparticles and silver nitrate. Environ Sci Technol 46:7390–7397.  https://doi.org/10.1021/es300734m CrossRefGoogle Scholar
  65. Polonini HC, Brandão HM, Raposo NRB, Brandão MAF, Mouton L, Couté A, Yéprémian C, Sivry Y, Brayner R (2015) Size-dependent ecotoxicity of barium titanate particles: the case of Chlorella vulgaris green algae. Ecotoxicology 24:938–948.  https://doi.org/10.1007/s10646-015-1436-6 CrossRefGoogle Scholar
  66. Rowley J, Slack F (2004) Conducting a literature review. Manag Res News 27:31–39.  https://doi.org/10.1108/01409170410784185 CrossRefGoogle Scholar
  67. Sadiq IM, Dalai S, Chandrasekaran N, Mukherjee A (2011) Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp and Chlorella sp. Ecotoxicol Environ Saf 74:1180–1187.  https://doi.org/10.1016/j.ecoenv.2011.03.006 CrossRefGoogle Scholar
  68. Schiavo S, Oliviero M, Miglietta M, Rametta G, Manzo S (2016) Genotoxic and cytotoxic effects of ZnO nanoparticles for Dunaliella tertiolecta and comparison with SiO2 and TiO2 effects at population growth inhibition levels. Sci Total Environ 550:619–627.  https://doi.org/10.1016/j.scitotenv.2016.01.135 CrossRefGoogle Scholar
  69. Schwab F, Bucheli TD, Camenzuli L, Magrez A, Knauer K, Sigg L, Nowack B (2013) Diuron sorbed to carbon nanotubes exhibits enhanced toxicity to Chlorella vulgaris. Environ Sci Technol 47:7012–7019.  https://doi.org/10.1021/es304016u CrossRefGoogle Scholar
  70. Sendra M, Yeste MP, Gatica JM, Moreno-Garrido I, Blasco J (2017) Direct and indirect effects of silver nanoparticles on freshwater and marine microalgae (Chlamydomonas reinhardtii and Phaeodactylum tricornutum). Chemosphere 179:279–289.  https://doi.org/10.1016/j.chemosphere.2017.03.123 CrossRefGoogle Scholar
  71. Sharma VK (2009) Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment—a review. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 44:1485–1495.  https://doi.org/10.1080/10934520903263231 CrossRefGoogle Scholar
  72. Slaveykova VI, Startchev K (2009) Effect of natural organic matter and green microalga on carboxyl-polyethylene glycol coated CdSe/ZnS quantum dots stability and transformations under freshwater conditions. Environ Pollut 157:3445–3450.  https://doi.org/10.1016/j.envpol.2009.06.017 CrossRefGoogle Scholar
  73. Smith DR (2008) Citation indexing and highly cited articles in the Australian Veterinary Journal. Aust Vet J 86:337–339.  https://doi.org/10.1111/j.1751-0813.2008.00330.x CrossRefGoogle Scholar
  74. Tang FQ, Li LL, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24:1504–1534.  https://doi.org/10.1002/adma.201104763 CrossRefGoogle Scholar
  75. Tang YL, Li SY, Qiao JL, Wang HT, Li L (2013) Synergistic effects of nano-sized titanium dioxide and zinc on the photosynthetic capacity and survival of anabaena sp. Int J Mol Sci 14:14395–14407.  https://doi.org/10.3390/ijms140714395 CrossRefGoogle Scholar
  76. Tang YL, Li SY, Lu Y, Li Q, Yu SL (2015a) The influence of humic acid on the toxicity of nano-ZnO and Zn2+ to the Anabaena sp. Environ Toxicol 30:895–903.  https://doi.org/10.1002/tox.21964 CrossRefGoogle Scholar
  77. Tang YL, Tian JL, Li SY, Xue CH, Xue ZH, Yin DQ, Yu SL (2015b) Combined effects of graphene oxide and Cd on the photosynthetic capacity and survival of Microcystis aeruginosa. Sci Total Environ 532:154–161.  https://doi.org/10.1016/j.scitotenv.2015.05.081 CrossRefGoogle Scholar
  78. van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84:523–538.  https://doi.org/10.1007/s11192-009-0146-3 CrossRefGoogle Scholar
  79. Van Hoecke K, De Schamphelaere KAC, Van der Meeren P, Smagghe G, Janssen CR (2011) Aggregation and ecotoxicity of CeO2 nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength. Environ Pollut 159:970–976.  https://doi.org/10.1016/j.envpol.2010.12.010 CrossRefGoogle Scholar
  80. Vincent JL, Paterson MJ, Norman BC, Gray EP, Ranville JF, Scott AB, Frost PC, Xenopoulos MA (2017) Chronic and pulse exposure effects of silver nanoparticles on natural lake phytoplankton and zooplankton. Ecotoxicology 26:502–515.  https://doi.org/10.1007/s10646-017-1781-8 CrossRefGoogle Scholar
  81. Wang ZY, Li J, Zhao J, Xing BS (2011) Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environ Sci Technol 45:6032–6040.  https://doi.org/10.1021/es2010573 CrossRefGoogle Scholar
  82. Wang Q, Yang ZG, Yang Y, Long CL, Li HP (2014) A bibliometric analysis of research on the risk of engineering nanomaterials during 1999-2012. Sci Total Environ 473:483–489.  https://doi.org/10.1016/j.scitotenv.2013.12.066 CrossRefGoogle Scholar
  83. Wang Z, Fang H, Wang S (2016a) Benzoic acid interactions affect aquatic properties and toxicity of copper oxide nanoparticles. Bull Environ Contam Toxicol 97:159–165.  https://doi.org/10.1007/s00128-016-1804-9 CrossRefGoogle Scholar
  84. Wang Z, Gao YC, Wang S, Fang H, Xu DF, Zhang F (2016b) Impacts of low-molecular-weight organic acids on aquatic behavior of graphene nanoplatelets and their induced algal toxicity and antioxidant capacity. Environ Sci Pollut Res 23:10938–10945.  https://doi.org/10.1007/s11356-016-6290-4 CrossRefGoogle Scholar
  85. Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM (2007) Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett 171:99–110.  https://doi.org/10.1016/j.toxlet.2007.04.008 CrossRefGoogle Scholar
  86. Wen YZ, Chen H, Yuan YL, Xu DM, Kang XD (2011) Enantioselective ecotoxicity of the herbicide dichlorprop and complexes formed with chitosan in two fresh water green algae. J Environ Monit 13:879–885.  https://doi.org/10.1039/c0em00593b CrossRefGoogle Scholar
  87. Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H (2012) Nanoparticles as drug delivery systems. Pharmacol Rep 64:1020–1037CrossRefGoogle Scholar
  88. Wong SWY, Leung PTY, Djurisic AB, Leung KMY (2010) Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Anal Bioanal Chem 396:609–618.  https://doi.org/10.1007/s00216-009-3249-z CrossRefGoogle Scholar
  89. Yang WW, Li Y, Miao AJ, Yang LY (2012) Cd2+ toxicity as affected by bare TiO2 nanoparticles and their bulk counterpart. Ecotoxicol Environ Saf 85:44–51.  https://doi.org/10.1016/j.ecoenv.2012.08.024 CrossRefGoogle Scholar
  90. Zamani H, Moradshahi A, Jahromi HD, Sheikhi MH (2014) Influence of PbS nanoparticle polymer coating on their aggregation behavior and toxicity to the green algae Dunaliella salina. Aquat Toxicol 154:176–183.  https://doi.org/10.1016/j.aquatox.2014.05.012 CrossRefGoogle Scholar
  91. Zhang H, Leung Y, Louden D, De Nys R, Lamb R (2008) The potential intrinsic and extrinsic toxicity of silica nanoparticles and its impact on marine organisms. Nano 3:271–278CrossRefGoogle Scholar
  92. Zhang L, He YL, Goswami N, Xie JP, Zhang B, Tao XJ (2016a) Uptake and effect of highly fluorescent silver nanoclusters on Scenedesmus obliquus. Chemosphere 153:322–331.  https://doi.org/10.1016/j.chemosphere.2016.03.076 CrossRefGoogle Scholar
  93. Zhang YQ, Dringen R, Petters C, Rastedt W, Koser J, Filser J, Stolte S (2016b) Toxicity of dimercaptosuccinate-coated and un-functionalized magnetic iron oxide nanoparticles towards aquatic organisms. Environ Sci Nano 3:754–767.  https://doi.org/10.1039/c5en00222b CrossRefGoogle Scholar
  94. Zhang S, Mao GZ, Crittenden J, Liu X, Du HB (2017a) Groundwater remediation from the past to the future: a bibliometric analysis. Water Res 119:114–125.  https://doi.org/10.1016/j.watres.2017.01.029 CrossRefGoogle Scholar
  95. Zhang X, Wang Z, Wang S, Fang H, Zhang F, Wang DG (2017b) Impacts of dissolved organic matter on aqueous behavior of nano/micron-titanium nitride and their induced enzymatic/non-enzymatic antioxidant activities in Scenedesmus obliquus. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 52:23–29.  https://doi.org/10.1080/10934529.2016.1221219 CrossRefGoogle Scholar
  96. Zhao J, Wang ZY, White JC, Xing BS (2014) Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation. Environ Sci Technol 48:9995–10009.  https://doi.org/10.1021/es5022679 CrossRefGoogle Scholar
  97. Zhao J, Cao XS, Wang ZY, Dai YH, Xing BS (2017) Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae. Water Res 111:18–27.  https://doi.org/10.1016/j.watres.2016.12.037 CrossRefGoogle Scholar
  98. Zheng TL, Wang J, Wang QH, Meng HM, Wang LH (2017) Research trends in electrochemical technology for water and wastewater treatment. Appl Water Sci 7:13–30.  https://doi.org/10.1007/s13201-015-0280-4 CrossRefGoogle Scholar
  99. Zurutuza A, Marinelli C (2014) Challenges and opportunities in graphene commercialization. Nat Nanotechnol 9:730–734CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and EngineeringTongji UniversityShanghaiPeople’s Republic of China
  2. 2.Shanghai Institute of Pollution Control and Ecological SecurityShanghaiPeople’s Republic of China
  3. 3.Tongji University LibraryTongji UniversityShanghaiPeople’s Republic of China

Personalised recommendations