Preparation and characterization of nano and micro particles of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) via emulsification/solvent evaporation and nanoprecipitation techniques

  • Yousof Farrag
  • Belén Montero
  • Maite Rico
  • Luis Barral
  • Rebeca Bouza
Research Paper


This paper describes the preparation and the characterization of micro and nanoparticles of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) via two different preparation techniques. The first technique is the emulsification/solvent evaporation while the second is the nanoprecipitation which is being reported for first time for the PHBV particles. The effect of various conditions of preparation on the size and the morphology of the produced particles was studied for both techniques. Field emission scanning electron microscopy, static light scattering and dynamic light scattering were used to analyse the size and the morphology of the particles. The particles produced using the emulsification/solvent evaporation were spherical porous micro and nanoparticles ranging from 300 up to 20 μm. The size, porosity and the particle size distribution were found to be controllable basically via choosing the surfactant and the polymer concentration when the emulsification technique was used. Choosing the appropriate anti-solvent and adjusting its polarity are crucial for getting spherical particles via nanoprecipitation. The micro and nanoparticles produced via both techniques are intended basically to be used for reinforcing biopolymeric matrices of PHBV and starches.


Biopolymers Nanomaterials PHBV Nanoprecipitation Synthesis 



This work is financially supported by the Spanish Ministry of Economy and Finance (MAT2013-41892-R, Project NanoCompBioPol) and Xunta de Galicia Government (Autonomous Community Government) and FEDER: program of consolidation and structuring competitive research units (GRC 2014/036). The authors thank Nanobiofar research group in the Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC) where the DLS measurements were performed.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Akerlof G (1932) Dielectric constants of some organic solvent-water mixtures at various temperatures. J Am Chem Soc 54:4125–4139. CrossRefGoogle Scholar
  2. Amperiadou A, Georgarakis M (1995) Controlled release salbutamol sulphate microcapsules prepared by emulsion solvent-evaporation technique and study on the release affected parameters. Int J Pharm 115:1–8. CrossRefGoogle Scholar
  3. Bai J, Dai J, Li G (2015) Electrospun composites of PHBV/pearl powder for bone repairing. Prog Nat Sci Mater Int 25:327–333. CrossRefGoogle Scholar
  4. Bakare R, Hawthrone S, Vails C, Gugssa A, Karim A, Stubbs J III, Raghavan D (2016) Antimicrobial and cell viability measurement of bovine serum albumin capped silver nanoparticles (ag/BSA) loaded collagen immobilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) film. J Colloid Interface Sci 465:140–148. CrossRefGoogle Scholar
  5. Baran ET, Ozer N, Hasirci V (2002) Poly(hydroxybutyrate-co-hydroxyvalerate) nanocapsules as enzyme carriers for cancer therapy: an in vitro study. J Microencapsul 19:363–376. CrossRefGoogle Scholar
  6. Bilati U, Allémann E, Doelker E (2005) Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci 24:67–75. CrossRefGoogle Scholar
  7. Bittmann B, Bouza R, Barral L, Castro-Lopez M, Dopico-Garcia S (2015) Morphology and thermal behavior of poly (3-hydroxybutyrate- co −3-hydroxyvalerate)/poly(butylene adipate- co -terephthalate)/clay nanocomposites. Polym Compos 36:2051–2058. CrossRefGoogle Scholar
  8. Bittmann B, Bouza R, Barral L, Diez J, Ramirez C (2013) Poly(3-hydroxybutyrate- co −3-hydroxyvalerate)/clay nanocomposites for replacement of mineral oil based materials. Polym Compos 34:1033–1040. CrossRefGoogle Scholar
  9. Bordes P, Pollet E, Avérous L (2009) Nano-biocomposites: Biodegradable polyester/nanoclay systems. Prog Polym Sci 34:125–155. CrossRefGoogle Scholar
  10. Bouza R, del Mar Castro M, Dopico-García S, Victoria González-Rodríguez M, Barral LF, Bittmann B (2016) Polylactic acid and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nano and microparticles for packaging bioplastic composites. Polym Bull 73:1–18. CrossRefGoogle Scholar
  11. Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23:1273–1335. CrossRefGoogle Scholar
  12. Chen Q, Li W, Yao Q, Liang R, Pérez-Garcia R, Munoz J, Boccaccini AR (2016) Multilayered drug delivery coatings composed of daidzein-loaded PHBV microspheres embedded in a biodegradable polymer matrix by electrophoretic deposition. J Mater Chem B 4:5035–5045. CrossRefGoogle Scholar
  13. Coimbra PA, De Sousa HC, Gil MH (2008) Preparation and characterization of flurbiprofen-loaded poly(3-hydroxybutyrate-co-3-hydroxyvalerate) microspheres. J Microencapsul 25:170–178. CrossRefGoogle Scholar
  14. Ding Y, Roether JA, Boccaccini AR, Schubert DW (2014) Fabrication of electrospun poly (3-hydroxybutyrate)/poly (ε-caprolactone)/silica hybrid fibermats with and without calcium addition. Eur Polym J 55:222–234. CrossRefGoogle Scholar
  15. Drozdek S, Bazylińska U (2016) Biocompatible oil core nanocapsules as potential co-carriers of paclitaxel and fluorescent markers: preparation, characterization, and bioimaging. Colloid Polym Sci 294:225–237. CrossRefGoogle Scholar
  16. Durán N, Alvarenga MA, Da Silva EC et al (2008) Microencapsulation of antibiotic rifampicin in poly(3-hydroxybutyrate-co-3- hydroxyvalerate). Arch Pharm Res 31:1509–1516. CrossRefGoogle Scholar
  17. Farmahini-Farahani M, Xiao H, Khan A, Pan Y, Yang Y (2015) Preparation and characterization of exfoliated PHBV nanocomposites to enhance water vapor barriers of calendared paper. Ind Eng Chem Res 54:11277–11284. CrossRefGoogle Scholar
  18. Freitas S, Merkle HP, Gander B (2005) Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J Control Release 102:313–332. CrossRefGoogle Scholar
  19. Gadani DH, Rana VA, Bhatnagar SP et al (2012) Effect of salinity on the dielectric properties of water. Indian J Pure Appl Phys 50:405–410Google Scholar
  20. Galindo-Rodriguez S, Alle E, Fessi H, Doelker E (2004) Physicochemical parameters associated with nanoparticle formation in the salting-out, nanoprecipitation methods. Pharm Res 21:1428–1439. CrossRefGoogle Scholar
  21. Gangrade N, Price JC (1991) Poly(hydroxybutyrate-hydroxyvalerate) microspheres containing progesterone: preparation, morphology and release properties. J Microencapsul 8:185–202. CrossRefGoogle Scholar
  22. Göz E, Karakeçili A (2016) Effect of emulsification-diffusion parameters on the formation of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) particles. Artif Cells Nanomed Biotechnol 44:226–234. CrossRefGoogle Scholar
  23. Grillo R, Pereira A do ES, de Melo NFS et al (2011) Controlled release system for ametryn using polymer microspheres: preparation, characterization and release kinetics in water. J Hazard Mater 186:1645–1651. CrossRefGoogle Scholar
  24. Iqbal M, Valour JP, Fessi H, Elaissari A (2015) Preparation of biodegradable PCL particles via double emulsion evaporation method using ultrasound technique. Colloid Polym Sci 293:861–873. CrossRefGoogle Scholar
  25. Joye IJ, McClements DJ (2014) Biopolymer-based nanoparticles and microparticles: fabrication, characterization, and application. Curr Opin Colloid Interface Sci 19:417–427. CrossRefGoogle Scholar
  26. Kennouche S, Le Moigne N, Kaci M et al (2016) Morphological characterization and thermal properties of compatibilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/poly(butylene succinate) (PBS)/halloysite ternary nanocomposites. Eur Polym J 75:142–162. CrossRefGoogle Scholar
  27. Lassalle V, Ferreira ML (2007) PLA nano- and microparticles for drug delivery: an overview of the methods of preparation. Macromol Biosci 7:767–783. CrossRefGoogle Scholar
  28. Laycock B, Halley P, Pratt S, Werker A, Lant P (2014) The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci 39:397–442. CrossRefGoogle Scholar
  29. Legrand P, Lesieur S, Bochot A, Gref R, Raatjes W, Barratt G, Vauthier C (2007) Influence of polymer behaviour in organic solution on the production of polylactide nanoparticles by nanoprecipitation. Int J Pharm 344:33–43. CrossRefGoogle Scholar
  30. Li W, Ding Y, Rai R, Roether JA, Schubert DW, Boccaccini AR (2014) Preparation and characterization of PHBV microsphere/45S5 bioactive glass composite scaffolds with vancomycin releasing function. Mater Sci Eng C 41:320–328. CrossRefGoogle Scholar
  31. Lightfoot Vidal S, Rojas C, Bouza Padin R et al (2016) Synthesis and characterization of polyhydroxybutyrate-co-hydroxyvalerate nanoparticles for encapsulation of quercetin. J Bioact Compat Polym 31:439–452. CrossRefGoogle Scholar
  32. Lionzo MIZ, Ré MI, Guterres SS, Pohlmann AR (2007) Microparticles prepared with poly(hydroxybutyrate-co-hydroxyvalerate) and poly(ε-caprolactone) blends to control the release of a drug model. J Microencapsul 24:175–186. CrossRefGoogle Scholar
  33. Lu R, Xu B, Tao K, Dou H, Qiu Y, Sun K, Zhang Y, Wu L, Sun K (2012) Structure and acoustical properties control of magnetite/PLA composite microbubbles. Colloid Polym Sci 290:63–71. CrossRefGoogle Scholar
  34. Meng W, Xing ZC, Jung KH, Kim SY, Yuan J, Kang IK, Yoon SC, Shin HI (2008) Synthesis of gelatin-containing PHBV nanofiber mats for biomedical application. J Mater Sci Mater Med 19:2799–2807. CrossRefGoogle Scholar
  35. Murueva AV, Shishatskaya EI, Kuzmina AM, Volova TG, Sinskey AJ (2013) Microparticles prepared from biodegradable polyhydroxyalkanoates as matrix for encapsulation of cytostatic drug. J Mater Sci Mater Med 24:1905–1915. CrossRefGoogle Scholar
  36. Musyanovych A, Schmitz-Wienke J, Mailänder V, Walther P, Landfester K (2008) Preparation of biodegradable polymer nanoparticles by miniemulsion technique and their cell interactions. Macromol Biosci 8:127–139. CrossRefGoogle Scholar
  37. Pacheco DP, Amaral MH, Reis RL, Marques AP, Correlo VM (2015) Development of an injectable PHBV microparticles-GG hydrogel hybrid system for regenerative medicine. Int J Pharm 478:398–408. CrossRefGoogle Scholar
  38. Park S-J, Kim S-H (2004) Preparation and characterization of biodegradable poly(l-lactide)/poly(ethylene glycol) microcapsules containing erythromycin by emulsion solvent evaporation technique. J Colloid Interface Sci 271:336–341. CrossRefGoogle Scholar
  39. Pawar SP, Misra A, Bose S, Chatterjee K, Mittal V (2015) Enzymatically degradable and flexible bio-nanocomposites derived from PHBV and PBAT blend: assessing thermal, morphological, mechanical, and biodegradation properties. Colloid Polym Sci 293:2921–2930. CrossRefGoogle Scholar
  40. Pich A, Schiemenz N, Corten C, Adler HJP (2006) Preparation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) particles in O/W emulsion. Polymer 47:1912–1920. CrossRefGoogle Scholar
  41. Poletto FS, Fiel LA, Donida B, Ré MI, Guterres SS, Pohlmann AR (2008) Controlling the size of poly(hydroxybutyrate-co-hydroxyvalerate) nanoparticles prepared by emulsification–diffusion technique using ethanol as surface agent. Colloids Surf A Physicochem Eng Asp 324:105–112. CrossRefGoogle Scholar
  42. Pramual S, Assavanig A, Bergkvist M, Batt CA, Sunintaboon P, Lirdprapamongkol K, Svasti J, Niamsiri N (2016) Development and characterization of bio-derived polyhydroxyalkanoate nanoparticles as a delivery system for hydrophobic photodynamic therapy agents. J Mater Sci Mater Med 27:1–11. CrossRefGoogle Scholar
  43. Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36:887–913. CrossRefGoogle Scholar
  44. Retama JR, Mecerreyes D, Lopez-Ruiz B, Lopez-Cabarcos E (2005) Synthesis and characterization of semiconducting polypyrrole/polyacrylamide microparticles with GOx for biosensor applications. Colloids Surf A Physicochem Eng Asp 270–271:239–244. CrossRefGoogle Scholar
  45. Rico M, Rodríguez-Llamazares S, Barral L, Bouza R, Montero B (2016) Processing and characterization of polyols plasticized-starch reinforced with microcrystalline cellulose. Carbohydr Polym 149:83–93. CrossRefGoogle Scholar
  46. Rodríguez-Contreras A, Canal C, Calafell-Monfort M, Ginebra MP, Julio-Moran G, Marqués-Calvo MS (2013) Methods for the preparation of doxycycline-loaded phb micro- and nano-spheres. Eur Polym J 49:3501–3511. CrossRefGoogle Scholar
  47. Schubert S, Delaney JT Jr, Schubert US (2011) Nanoprecipitation and nanoformulation of polymers: from history to powerful possibilities beyond poly(lactic acid). Soft Matter 7:1581–1588. CrossRefGoogle Scholar
  48. Shcherbakov VV, Artemkina YM, Korotkova EN (2014) Dielectric properties and high-frequency conductivity of the sodium chloride-water system. Russ J Inorg Chem 59:922–926. CrossRefGoogle Scholar
  49. Shishatskaya EI, Volova TG, Puzyr AP, Mogilnaya OA, Efremov SN (2004) Tissue response to the implantation of biodegradable polyhydroxyalkanoate sutures. J Mater Sci Mater Med 15:719–728. CrossRefGoogle Scholar
  50. Vauthier C, Bouchemal K (2009) Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 26:1025–1058. CrossRefGoogle Scholar
  51. Vilos C, Morales FA, Solar PA, Herrera NS, Gonzalez-Nilo FD, Aguayo DA, Mendoza HL, Comer J, Bravo ML, Gonzalez PA, Kato S, Cuello MA, Alonso C, Bravo EJ, Bustamante EI, Owen GI, Velasquez LA (2013) Paclitaxel-PHBV nanoparticles and their toxicity to endometrial and primary ovarian cancer cells. Biomaterials 34:4098–4108. CrossRefGoogle Scholar
  52. Wang B, Zhang Y, Zhang J, Gou QT, Wang ZB, Chen P, Gu Q (2013) Crystallization behavior, thermal and mechanical properties of PHBV/graphene nanosheet composites. Chin J Polym Sci 31:670–678. CrossRefGoogle Scholar
  53. Williams SF, Martin DP, Horowitz DM, Peoples OP (1999) PHA applications: addressing the price performance issue: I. Tissue engineering. Int J Biol Macromol 25:111–121. CrossRefGoogle Scholar
  54. Wyman J (1931) The dielectric constant of mixtures of ethyl alcohol and water from −5 to 40°. J Am Chem Soc 53:3292–3301. CrossRefGoogle Scholar
  55. Yang Y-Y, Chung T-S, Ping Ng N (2001) Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials 22:231–241. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Yousof Farrag
    • 1
  • Belén Montero
    • 1
  • Maite Rico
    • 1
  • Luis Barral
    • 1
  • Rebeca Bouza
    • 1
  1. 1.Grupo de Polímeros, Departamento de FísicaUniversidade da Coruña, Escuela Universitaria PolitécnicaFerrolSpain

Personalised recommendations