Effect of platinum dispersion on photocatalytic performance of Pt-TiO2

Research Paper
  • 98 Downloads

Abstract

Noble metal Pt nanoparticles have been considered as the most effective co-catalyst to improve the photocatalytic hydrogen production activity of TiO2. In this study, the effect of the dispersion of Pt nanoparticles on the photoactivity of TiO2 nanotubes was investigated. Compared with the samples that the co-catalyst of Pt nanoparticles agglomerated or freely dispersed, the sample with the uniformly dispersion of Pt nanoparticles showed a higher performance for photocatalytic hydrogen production. The photocatalysts were characterized systematically by TEM, BET, UV-Vis, XPS, and PL techniques, and the relationship between the structure and the photoactivity was investigated in detail. The results demonstrated that the dispersion status of Pt nanoparticles had a crucial effect on the photocatalytic activity.

Keywords

TiO2 Pt co-catalyst Dispersion Photocatalytic hydrogen production 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abe R, Takami H, Murakami N, Ohtani B (2008) Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. J Am Chem Soc 130(25):7780–7781CrossRefGoogle Scholar
  2. Bahruji H, Bowker M, Davies PR, Morgan DJ, Morton CA, Egerton TA, Kennedy J, Jones W (2014) Rutile TiO2–Pd photocatalysts for hydrogen gas production from methanol reforming. Top Catal 58(2–3):70–76Google Scholar
  3. Bamwenda GR, Tsubota S, Nakamura T, Haruta M (1995) Photoassisted hydrogen production from a water-ethanol solution: a comparison of activities of Au-TiO2 and Pt-TiO2. J Photochem Photobiol A Chem 89:177–189CrossRefGoogle Scholar
  4. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570CrossRefGoogle Scholar
  5. Chen W, Wang H, Mao L, Chen X, Shangguan W (2014) Influence of loading Pt, RhO2 co-catalysts on photocatalytic overall water splitting over H1.9K0.3La0.5Bi0.1Ta2O7. Catal Commun 57:115–118CrossRefGoogle Scholar
  6. Chiarello GL, Dozzi MV, Selli E (2017) TiO2-based materials for photocatalytic hydrogen production. J Energy Chem 26(2):250–258CrossRefGoogle Scholar
  7. Du XL, Wang XL, Li YH, Wang YL, Zhao JJ, Fang LJ, Zheng LR, Tong H, Yang HG (2017) Isolation of single Pt atoms in a silver cluster: forming highly efficient silver-based cocatalysts for photocatalytic hydrogen evolution. Chem Commun (Camb) 53(68):9402–9405CrossRefGoogle Scholar
  8. Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301(5635):935–938CrossRefGoogle Scholar
  9. Guayaquil-Sosa JF, Serrano-Rosales B, Valadés-Pelayo PJ, de Lasa H (2017) Photocatalytic hydrogen production using mesoporous TiO2 doped with Pt. Appl Catal B Environ 211:337–348CrossRefGoogle Scholar
  10. Hu Q, Huang J, Li G, Chen J, Zhang Z, Deng Z, Jiang Y, Guo W, Cao Y (2016) Effective water splitting using CuOx/TiO2 composite films: role of Cu species and content in hydrogen generation. Appl Surf Sci 369:201–206CrossRefGoogle Scholar
  11. Jin C, Dai Y, Wei W, Ma X, Li M and Huang B (2017a) Effects of single metal atom (Pt, Pd, Rh and Ru) adsorption on the photocatalytic properties of anatase TiO2. Applied Surface ScienceGoogle Scholar
  12. Jin J, Wang C, Ren XN, Huang SZ, Wu M, Chen LH, Hasan T, Wang BJ, Li Y, Su BL (2017b) Anchoring ultrafine metallic and oxidized Pt nanoclusters on yolk-shell TiO2 for unprecedentedly high photocatalytic hydrogen production. Nano Energy 38:118–126CrossRefGoogle Scholar
  13. Li Q, Wang X, Jin Z, Yang D, Zhang S, Guo X, Yang J, Zhang Z (2006) n/p-Type changeable semiconductor TiO2 prepared from NTA. J Nanopart Res 9(5):951–957CrossRefGoogle Scholar
  14. Li YH, Xing J, Chen ZJ, Li Z, Tian F, Zheng LR, Wang HF, Hu P, Zhao HJ, Yang HG (2013) Unidirectional suppression of hydrogen oxidation on oxidized platinum clusters. Nat Commun 4:2500Google Scholar
  15. Li G, Lian Z, Wang W, Zhang D, Li H (2016) Nanotube-confinement induced size-controllable g-C3N4 quantum dots modified single-crystalline TiO2 nanotube arrays for stable synergetic photoelectrocatalysis. Nano Energy 19:446–454CrossRefGoogle Scholar
  16. Li F, Gu Q, Niu Y, Wang R, Tong Y, Zhu S, Zhang H, Zhang Z, Wang X (2017) Hydrogen evolution from aqueous-phase photocatalytic reforming of ethylene glycol over Pt/TiO2 catalysts: role of Pt and product distribution. Appl Surf Sci 391:251–258CrossRefGoogle Scholar
  17. Lian Z, Wang W, Li G, Tian F, Schanze KS, Li H (2017) Pt-enhanced mesoporous Ti3+/TiO2 with rapid bulk to surface electron transfer for photocatalytic hydrogen evolution. ACS Appl Mater Interfaces 9(20):16959–16966CrossRefGoogle Scholar
  18. Liang S, Xia Y, Zhu S, Zheng S, He Y, Bi J, Liu M, Wu L (2015) Au and Pt co-loaded g-C3N4 nanosheets for enhanced photocatalytic hydrogen production under visible light irradiation. Appl Surf Sci 358:304–312CrossRefGoogle Scholar
  19. López CR, Melián EP, Ortega Méndez JA, Santiago DE, Doña Rodríguez JM, González Díaz O (2015) Comparative study of alcohols as sacrificial agents in H2 production by heterogeneous photocatalysis using Pt/TiO2 catalysts. J Photochem Photobiol A Chem 312:45–54CrossRefGoogle Scholar
  20. Melián EP, López CR, Méndez AO, Díaz OG, Suárez MN, Doña Rodríguez JM, Navío JA, Fernández Hevia D (2013) Hydrogen production using Pt-loaded TiO2 photocatalysts. Int J Hydrog Energy 38(27):11737–11748CrossRefGoogle Scholar
  21. Meng A, Zhang J, Xu D, Cheng B, Yu J (2016) Enhanced photocatalytic H2-production activity of anatase TiO2 nanosheet by selectively depositing dual-cocatalysts on {101} and {001} facets. Appl Catal B Environ 198:286–294CrossRefGoogle Scholar
  22. Qian L, Jin ZS, Zhang JW, Huang YB, Zhang ZJ, Du ZL (2004) Study of the visible-excitation luminescence of NTA-TiO2(AB) with single-electron-trapped oxygen vacancies. Appl Phys A 80(8):1801–1805CrossRefGoogle Scholar
  23. Qin L, Si G, Li X, Kang SZ (2015) Synergetic effect of Cu–Pt bimetallic cocatalyst on SrTiO3 for efficient photocatalytic hydrogen production from water. RSC Adv 5(124):102593–102598CrossRefGoogle Scholar
  24. Ravishankar TN, de Oliveira Vaz M, Khan S, Ramakrishnappa T, Teixeira SR, Balakrishna GR, Nagaraju G, Dupont J (2016) Enhanced photocatalytic hydrogen production from Y2O3/TiO2 nano-composites: a comparative study on hydrothermal synthesis with and without an ionic liquid. New J Chem 40(4):3578–3587CrossRefGoogle Scholar
  25. Sim LC, Leong KH, Saravanan P, Ibrahim S (2015) Rapid thermal reduced graphene oxide/Pt–TiO2 nanotube arrays for enhanced visible-light-driven photocatalytic reduction of CO2. Appl Surf Sci 358:122–129CrossRefGoogle Scholar
  26. Su R, Dimitratos N, Liu J, Carter E, Althahban S, Wang X, Shen Y, Wendt S, Wen X, Niemantsverdriet JW, Iversen BB, Kiely CJ, Hutchings GJ, Besenbacher F (2016) Mechanistic insight into the interaction between a titanium dioxide photocatalyst and Pd cocatalyst for improved photocatalytic performance. ACS Catal 6(7):4239–4247CrossRefGoogle Scholar
  27. Sun J, Zhang J, Zhang M, Antonietti M, Fu X and Wang X (2012) Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nat Commun 3(1)Google Scholar
  28. Tálas E, Pászti Z, Korecz L, Domján A, Németh P, Szíjjártó G P, Mihály J and Tompos A (2017) PtOx-SnOx-TiO2 catalyst system for methanol photocatalytic reforming: influence of cocatalysts on the hydrogen production. Catalysis Today Google Scholar
  29. Tang ZK, Yin WJ, Le Z, Wen B, Zhang DY, Liu LM, Lau WM (2016) Spatial separation of photo-generated electron-hole pairs in BiOBr/BiOI bilayer to facilitate water splitting. Sci Rep 6:32764CrossRefGoogle Scholar
  30. Vorontsov AV, Savinov EN, Zhensheng J (1999) Influence of the form of photodeposited platinum on titania upon its photocatalytic activity in CO and acetone oxidation. J Photochem Photobiol A Chem 125:113–117CrossRefGoogle Scholar
  31. Wang Y, Jing M, Zhang M, Yang J (2012) Facile synthesis and photocatalytic activity of platinum decorated TiO2−xNx: perspective to oxygen vacancies and chemical state of dopants. Catal Commun 20:46–50CrossRefGoogle Scholar
  32. Xiong Z, Lei Z, Chen X, Gong B, Zhao Y, Zhang J, Zheng C, Wu JCS (2017) CO2 photocatalytic reduction over Pt deposited TiO2 nanocrystals with coexposed {101} and {001} facets: effect of deposition method and Pt precursors. Catal Commun 96:1–5CrossRefGoogle Scholar
  33. Yang JJ, Jin ZS, Wang XD, Li W, Zhang JW, Zhang SL, Guo XY, Zhang ZJ (2003) Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2. Dalton T 20:3898–3901CrossRefGoogle Scholar
  34. Yang HY, Yu SF, Lau SP, Zhang X, Sun DD, Jun G (2009) Direct growth of ZnO nanocrystals onto the surface of porous TiO2 nanotube arrays for highly efficient and recyclable photocatalysts. Small 5(20):2260–2264CrossRefGoogle Scholar
  35. Yu L, Shao Y, Li D (2017) Direct combination of hydrogen evolution from water and methane conversion in a photocatalytic system over Pt/TiO2. Appl Catal B Environ 204:216–223CrossRefGoogle Scholar
  36. Zhan W, He Q, Liu X, Guo Y, Wang Y, Wang L, Guo Y, Borisevich AY, Zhang J, Lu G, Dai S (2016) A sacrificial coating strategy toward enhancement of metal-support interaction for ultrastable Au nanocatalysts. J Am Chem Soc 138(49):16130–16139CrossRefGoogle Scholar
  37. Zhan W, Shu Y, Sheng Y, Zhu H, Guo Y, Wang L, Guo Y, Zhang J, Lu G, Dai S (2017) Surfactant-assisted stabilization of Au colloids on solids for heterogeneous catalysis. Angew Chem 56(16):4494–4498CrossRefGoogle Scholar
  38. Zhang JW, Guo XY, Jin ZS, Zhang SL, Zhou JF, Zhang ZJ (2003) TEM study on the formation process of TiO2 nanotubes. Chin Chem Lett 14(4):419–422Google Scholar
  39. Zhang M, Jin Z, Zhang J, Guo X, Yang J, Li W, Wang X, Zhang Z (2004a) Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)2. J Mol Catal A Chem 217(1–2):203–210CrossRefGoogle Scholar
  40. Zhang S, Li W, Jin Z, Yang J, Zhang J, Du Z, Zhang Z (2004b) Study on ESR and inter-related properties of vacuum-dehydrated nanotubed titanic acid. J Solid State Chem 177(4–5):1365–1371CrossRefGoogle Scholar
  41. Zhang J, Zhang G, Chen X, Lin S, Mohlmann L, Dolega G, Lipner G, Antonietti M, Blechert S, Wang X (2012) Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light. Angew Chem 51(13):3183–3187CrossRefGoogle Scholar
  42. Zhang J, Zhang M, Yang C, Wang X (2014) Nanospherical carbon nitride frameworks with sharp edges accelerating charge collection and separation at a soft photocatalytic interface. Adv Mater 26(24):4121–4126CrossRefGoogle Scholar
  43. Zhang Q, Bai H, Zhang Q, Ma Q, Li Y, Wan C, Xi G (2016) MoS2 yolk–shell microspheres with a hierarchical porous structure for efficient hydrogen evolution. Nano Res 9(10):3038–3047CrossRefGoogle Scholar
  44. Zhao W, Ai Z, Dai J, Zhang M (2014) Enhanced photocatalytic activity for H2 evolution under irradiation of UV-vis light by Au-modified nitrogen-doped TiO2. PLoS One 9(8):e103671CrossRefGoogle Scholar
  45. Zhu Z, Kao CT, Tang BH, Chang WC, Wu RJ (2016) Efficient hydrogen production by photocatalytic water-splitting using Pt-doped TiO2 hollow spheres under visible light. Ceram Int 42(6):6749–6754CrossRefGoogle Scholar
  46. Zielińska-Jurek A, Hupka J (2014) Preparation and characterization of Pt/Pd-modified titanium dioxide nanoparticles for visible light irradiation. Catal Today 230:181–187CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Collaborative Innovation Center of Nano Functional Materials and Applications of Henan ProvinceHenan UniversityKaifengPeople’s Republic of China

Personalised recommendations