Advertisement

Tuning of optical properties of CdS nanoparticles synthesized in a glass matrix

  • Ivan D. Popov
  • Yulia V. Kuznetsova
  • Svetlana V. Rempel
  • Andrey A. Rempel
Research Paper
  • 201 Downloads

Abstract

Attempts were made to provide the data concerning directed synthesis of semiconductor nanoparticles in a dielectric silica-based glass matrix. These attempts involve finding out the connections between the structure, size of CdS nanoparticles, and optical properties of the nanocomposites produced. High-resolution focused ion beam scanning electron microscopy images of CdS nanoparticles incorporated in glass and SAXS results confirm the formation of uniformly distributed spherical CdS nanoparticles with an average diameter of about 6.2 nm. UV–Vis measurements show that CdS composites possess a direct bandgap wider than 2.45 eV depending on the heat treatment conditions; thus, heat treatment can be used to control nanoparticle size in each selected composite. The emission spectra showed a maximum at about 603 nm and a red shift of about 100 nm with increasing annealing temperature that is associated with the presence of defect states in the nanoparticles. In addition, semiconductor phase concentration in the glass matrix was found by using optical absorption data for the first time, which allows understanding the effect of nanocomposite structure on luminescence properties.

Keywords

CdS Nanoparticles Glass Quantum dots Nanocomposite Optics 

Notes

Acknowledgements

The authors are grateful to Maria Lukashova for SEM and EDX experiments that were performed at TESCAN Demonstrating Center in Saint Petersburg, Russia. The DTA/DSC experiment was carried out at the Center for Thermogravimetric and Calorimetric Research of Research Park of Saint Petersburg State University in Saint Petersburg, Russia. The SAXS measurement was performed in the University Erlangen-Nuremberg, Germany. The authors are grateful to Balyakin I.A. from the Institute of Solid State Chemistry in Ekaterinburg, Russia, for carrying out and imaging the simulations of nanocomposites.

Funding information

This study was funded by the Russian Foundation for Basic Research (project no. 17-03-01024).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abraham FF (1974) Homogeneous nucleation theory: the pretransition theory of vapor condensation. Academic PressGoogle Scholar
  2. Borg RJ, Dienes GJ (1988) An introduction to solid state diffusion. Academic PressGoogle Scholar
  3. Brekhovskikh SM, Nikonov YP, Neich AI, Semina LS (1982) Synthesis of selenium-cadmium ruby glass. Glas Ceram 39:321–324.  https://doi.org/10.1007/BF00702254 CrossRefGoogle Scholar
  4. Chatterjee M, Patra A (2004) Cadmium sulfide aggregates through reverse micelles. J Am Ceram Soc 84:1439–1444.  https://doi.org/10.1111/j.1151-2916.2001.tb00857.x CrossRefGoogle Scholar
  5. Dey C, Molla AR, Goswami M, Kothiyal GP, Karmakar B (2014) Synthesis and optical properties of multifunctional CdS nanostructured dielectric nanocomposites. J Opt Soc Am B 31:1761.  https://doi.org/10.1364/JOSAB.31.001761 CrossRefGoogle Scholar
  6. Di Luccio T, Laera AM, Tapfer L et al (2006) Controlled nucleation and growth of CdS nanoparticles in a polymer matrix. J Phys Chem B 110:12603–12609.  https://doi.org/10.1021/jp061003m CrossRefGoogle Scholar
  7. Eaton DF (2001) Nonlinear optical materials. Science 253:281–287.  https://doi.org/10.1016/B0-08-043152-6/01107-4 CrossRefGoogle Scholar
  8. Efros AL, Efros AL (1982) Interband absorption of light in a semiconductor sphere. Sov Phys Semicond 16:772–775Google Scholar
  9. Ekimov AI, Efros AL, Onushchenko AA (1993) Quantum size effect in semiconductor microcrystals. Solid State Commun 88:947–950.  https://doi.org/10.1016/0038-1098(93)90275-R CrossRefGoogle Scholar
  10. Gallagher SJ, Rowan BC, Doran J, Norton B (2007) Quantum dot solar concentrator: device optimisation using spectroscopic techniques. Sol Energy 81:540–547.  https://doi.org/10.1016/J.SOLENER.2006.07.006 CrossRefGoogle Scholar
  11. Gaponenko SV (1998) Optical properties of semiconductor nanocrystals. Cambridge University PressGoogle Scholar
  12. Glass AM (1987) Optical materials. Science 235:1003–1009.  https://doi.org/10.1126/science.235.4792.1003 CrossRefGoogle Scholar
  13. Hayes TM, Lurio LB, Pant J, Persans PD (2001a) Order in CdS nanoparticles in glass. Solid State Commun 117:627–630.  https://doi.org/10.1016/S0038-1098(00)00511-1 CrossRefGoogle Scholar
  14. Hayes TM, Lurio LB, Persans PD (2001b) Growth and dissolution of CdS nanoparticles in glass. J Phys Condensed Matter 13:425–431.  https://doi.org/10.1088/0953-8984/13/3/305 CrossRefGoogle Scholar
  15. Hayes TM, Persans PD, Filin A, Peng C, Huang W (2005) Cd and Se atomic environments during the growth of CdSe nanoparticles in glass. Phys Scr T115:703–705.  https://doi.org/10.1238/Physica.Topical.115a00703 CrossRefGoogle Scholar
  16. Henneberger F, Schmitt-Rink S, Göbel EO (1993) Optics of semiconductor nanostructures. WileyGoogle Scholar
  17. Hullavarad NV, Hullavarad SS, Karulkar PC (2008) Cadmium sulphide (CdS) nanotechnology: synthesis and applications. J Nanosci Nanotechnol 8:3272–3299.  https://doi.org/10.1166/jnn.2008.145 CrossRefGoogle Scholar
  18. Kale BB, Baeg J-O, Apte SK, Sonawane RS, Naik SD, Patil KR (2007) Confinement of nano CdS in designated glass: a novel functionality of quantum dot–glass nanosystems in solar hydrogen production. J Mater Chem 17:4297–4303.  https://doi.org/10.1039/b708269j CrossRefGoogle Scholar
  19. Kumar J, Verma A, Pandey PK, Bhatnagar PK, Mathur PC, Liu W, Tang SH (2009) Study of optical absorption and photoluminescence of quantum dots of CdS formed in borosilicate glass matrix. Phys Scr 79:65601–65604.  https://doi.org/10.1088/0031-8949/79/06/065601 CrossRefGoogle Scholar
  20. Kuznetsova YV, Rempel AA (2015) Synthesis of cadmium sulfide CdS nanoparticles in a silicate glass matrix. Inorg Mater 51:933–938.  https://doi.org/10.1134/S0020168515090125 CrossRefGoogle Scholar
  21. Kuznetsova YV, Rempel AA, Meyer M, Pipich V, Gerth S, Magerl A (2016) Small angle X-ray and neutron scattering on cadmium sulfide nanoparticles in silicate glass. J Cryst Growth 447:13–17.  https://doi.org/10.1016/j.jcrysgro.2016.04.058 CrossRefGoogle Scholar
  22. Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19:35–50.  https://doi.org/10.1016/0022-3697(61)90054-3 CrossRefGoogle Scholar
  23. Mondal SP, Mullick H, Lavanya T, Dhar A, Ray SK, Lahiri SK (2007) Optical and dielectric properties of junctionlike CdS nanocomposites embedded in polymer matrix. J Appl Phys 102:64305.  https://doi.org/10.1063/1.2784017 CrossRefGoogle Scholar
  24. Nagpal S (2011) CdS quantum dots in a novel glass with a very low activation energy and its variation of diffusivity with temperature. J Nanopart Res 13:2733–2741.  https://doi.org/10.1007/s11051-010-0083-3 CrossRefGoogle Scholar
  25. Naik SD, Apte SK, Sonawane RS, Mulik UP, Kale BB (2005) Nanostructured CdS/CdSSe glass composite for photonic application. Pramana 65:707–712.  https://doi.org/10.1007/BF03010458 CrossRefGoogle Scholar
  26. Okamoto H, Matsuoka J, Nasu H, Kamiya K, Tanaka H (1994) Effect of cadmium to sulfur ratio on the photoluminescence of CdS-doped glasses. J Appl Phys 75:2251–2556.  https://doi.org/10.1063/1.356288 CrossRefGoogle Scholar
  27. Persans PD, Lurio LB, Pant J, Lian GD, Hayes TM (2001) Zn incorporation in CdS nanoparticles in glass. Phys Rev B 63:115320.  https://doi.org/10.1103/PhysRevB.63.115320 CrossRefGoogle Scholar
  28. Potter BG, Simmons JH (1988) Quantum size effects in optical properties of CdS-glass composites. Phys Rev B Condens Matter 37:10838–10845.  https://doi.org/10.1103/PhysRevB.37.10838 CrossRefGoogle Scholar
  29. Raevskaya AE, Stroyuk OL, Solonenko DI, Dzhagan VM, Lehmann D, Kuchmiy SY, Plyusnin VF, Zahn DRT (2014) Synthesis and luminescent properties of ultrasmall colloidal CdS nanoparticles stabilized by cd(II) complexes with ammonia and mercaptoacetate. J Nanopart Res 16:2650.  https://doi.org/10.1007/s11051-014-2650-5 CrossRefGoogle Scholar
  30. Rempel AA (2013) Hybrid nanoparticles based on sulfides, oxides, and carbides. Russ Chem Bull 62:857–868.  https://doi.org/10.1007/s11172-013-0118-x CrossRefGoogle Scholar
  31. Rempel A, Magerl A (2010) Non-periodicity in nanoparticles with close-packed structures. Acta Crystallogr A: Found Crystallogr 66:479–483.  https://doi.org/10.1107/S010876731001250X CrossRefGoogle Scholar
  32. Rempel SV, Razvodov AA, Nebogatikov MS et al (2013) Sizes and fluorescence of cadmium sulfide quantum dots. Phys Solid State 55:624–628.  https://doi.org/10.1134/S1063783413030244 CrossRefGoogle Scholar
  33. Rempel SV, Podkorytova AA, Rempel AA (2014) Concentration quenching of fluorescence of colloid quantum dots of cadmium sulfide. Phys Solid State 56:568–571.  https://doi.org/10.1134/S1063783414030251 CrossRefGoogle Scholar
  34. Rempel SV, Levin AD, Sadagov AY, Rempel AA (2015) Optical properties of cadmium sulfide quantum dots in water solutions. Phys Solid State 57:1103–1107.  https://doi.org/10.1134/S106378341506027X CrossRefGoogle Scholar
  35. Simonova NB, Tuzikov FV, Khramov RN, Tuzikova NA, Tuzikov MF, Vakshtein MS (2011) Study of CdSe/CdS quantum dots in solutions and gels by small-angle X-ray scattering. J Surf Invest X-Ray Synchrotron Neutron Tech 5:126–133.  https://doi.org/10.1134/S1027451011020182 CrossRefGoogle Scholar
  36. Sonawane RS, Naik SD, Apte SK, Kulkarni MV, Kale BB (2008) CdS/CdSSe quantum dots in glass matrix. Bull Mater Sci 31:495–499.  https://doi.org/10.1007/s12034-008-0077-2 CrossRefGoogle Scholar
  37. Su G, Liu C, Deng Z, Zhao X, Zhou X (2017) Size-dependent photoluminescence of PbS QDs embedded in silicate glasses. Optical Mater Express 7:2194.  https://doi.org/10.1364/OME.7.002194 CrossRefGoogle Scholar
  38. Tauc J (1970) Absorption edge and internal electric fields in amorphous semiconductors. Mat Res Bull 5:721–730.  https://doi.org/10.1016/0025-5408(70)90112-1 CrossRefGoogle Scholar
  39. Trindade T, O’Brien P, Pickett NL (2001) Nanocrystalline semiconductors: synthesis, properties, and perspectives. Chem Mater 13:3843–3858.  https://doi.org/10.1021/CM000843P CrossRefGoogle Scholar
  40. Ünlü H, Horing NJM (2013) Low dimensional semiconductor structures. Springer, HeidelbergCrossRefGoogle Scholar
  41. Ushakov VV, Aronin AS, Karavanski VA, Gippius AA (2009) Formation and optical properties of CdSSe semiconductor nanocrystals in the silicate glass matrix. Phys Solid State 51:2161–2165.  https://doi.org/10.1134/S106378340910028X CrossRefGoogle Scholar
  42. Verma A, Nagpal S, Pandey PK, Bhatnagar PK, Mathur PC (2007) Trap elimination and reduction of size dispersion due to aging in CdS x Se1-x quantum dots. J Nanopart Res 9:1125–1131.  https://doi.org/10.1007/s11051-007-9214-x CrossRefGoogle Scholar
  43. Vorokh AS, Rempel AA (2007) Atomic structure of cadmium sulfide nanoparticles. Phys Solid State 49:148–153.  https://doi.org/10.1134/S1063783407010246 CrossRefGoogle Scholar
  44. Wageh S, El-Nahas AM, Higazy AA, Mahmoud MAM (2013) Preparation and characterization of a novel system of CdS nanoparticles embedded in borophosphate glass matrix. J Alloys Compd 555:161–168.  https://doi.org/10.1016/j.jallcom.2012.12.056 CrossRefGoogle Scholar
  45. Weyl WA (1999) Coloured glasses. Society of Glass TechnologyGoogle Scholar
  46. Xu W, Akins D (2004) Reverse micellar synthesis of CdS nanoparticles and self-assembly into a superlattice. Mater Lett 58:2623–2626.  https://doi.org/10.1016/j.matlet.2004.03.035 CrossRefGoogle Scholar
  47. Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860.  https://doi.org/10.1021/CM034081K CrossRefGoogle Scholar
  48. Yukselici H, Persans PD, Hayes TM (1995) Optical studies of the growth of Cd1-xZnxS nanocrystals in borosilicate glass. Phys Rev B 52:11763–11772.  https://doi.org/10.1103/PhysRevB.52.11763 CrossRefGoogle Scholar
  49. Yükselici H, Allahverdi Ç, Aşıkoğlu A et al (2013) Optical studies of semiconductor quantum dots. Springer, Heidelberg, pp 101–117Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Ivan D. Popov
    • 1
  • Yulia V. Kuznetsova
    • 1
  • Svetlana V. Rempel
    • 1
    • 2
  • Andrey A. Rempel
    • 1
  1. 1.Institute of Solid State ChemistryUral Branch of the Russian Academy of SciencesEkaterinburgRussia
  2. 2.Ural Federal UniversityEkaterinburgRussia

Personalised recommendations