Advertisement

Engineering CNDP’s of dendrimers containing phosphorous interior compositions to produce new emerging properties

  • Anne-Marie Caminade
  • Jean-Pierre Majoral
Review
Part of the following topical collections:
  1. Unifying Concepts for Nanoscience and Nanosystems: 20th Anniversary Issue

Abstract

Phosphorus-containing dendrimers are defined as dendrimers having at least one phosphorus atom at each branching point. In this review, we will show how phosphorhydrazone dendrimers can be modified at will at the level of the core and of the branches, to afford specific properties, such as fluorescence to image biological events. Accelerated methods of synthesis of phosphorus (one step for one generation) will be also displayed, as well as the specific reactivity of P=N–P=S linkages obtained in most of these accelerated method of synthesis, which has led to particularly original dendritic architectures, such as dendrons included in dendrimers. Finally, we will display how modifications of the internal structure of a series of dendrimers having the same type and number of terminal functions can deeply modify their biological anti-inflammatory properties. Among the six critical nanoscale design parameters (CNDP), we will show how two of them, i.e., architecture and elemental composition, have been particularly engineered to modify phosphorus-containing dendrimers, in order to fulfill the desired properties.

Keywords

Phosphorus chemistry Monomers Dendrimers Fluorescence CNDP Nanoscale architectures 

Notes

Acknowledgements

Thanks are due to the CNRS (Centre National de la Recherche Scientifique) for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aharoni SM, Crosby CR, Walsh EK (1982) Size and solution properties of globular tert-butyloxycarbonyl-poly(alpha,XI-L-lysine). Macromolecules 15:1093–1098.  https://doi.org/10.1021/ma00232a026 CrossRefGoogle Scholar
  2. Brauge L, Caminade AM, Majoral JP, Slomkowski S, Wolszczak M (2001a) Segmental mobility in phosphorus-containing dendrimers. Studies by fluorescent spectroscopy. Macromolecules 34:5599–5606.  https://doi.org/10.1021/ma0020077 CrossRefGoogle Scholar
  3. Brauge L, Magro G, Caminade AM, Majoral JP (2001b) First divergent strategy using two AB(2) unprotected monomers for the rapid synthesis of dendrimers. J Am Chem Soc 123:6698–6699.  https://doi.org/10.1021/ja0029228 CrossRefGoogle Scholar
  4. Brauge L, Magro G, Caminade AM, Majoral JP (2001c) First divergent strategy using two AB(2) unprotected monomers for the rapid synthesis of dendrimers (vol 123, pg 6698, 2001). J Am Chem Soc 123:8446–8446.  https://doi.org/10.1021/ja0151596 CrossRefGoogle Scholar
  5. Cadierno V, Igau A, Donnadieu B, Caminade AM, Majoral JP (1999) Dendrimers containing zwitterionic phosphonium anionic zirconocene(IV) complexes. Organometallics 18:1580–1582.  https://doi.org/10.1021/om980880e CrossRefGoogle Scholar
  6. Caminade AM, Laurent R, Chaudret B, Majoral JP (1998) Phosphine-terminated dendrimers—synthesis and complexation properties. Coord Chem Rev 178:793–821.  https://doi.org/10.1016/s0010-8545(98)00057-5 CrossRefGoogle Scholar
  7. Caminade AM, Servin P, Laurent R, Majoral JP (2008) Dendrimeric phosphines in asymmetric catalysis. Chem Soc Rev 37(1):56–67.  https://doi.org/10.1039/b606569b CrossRefGoogle Scholar
  8. Caminade AM, Hameau A, Majoral JP (2009) Multicharged and/or water-soluble fluorescent dendrimers: properties and uses. Chem Eur J 15:9270–9285.  https://doi.org/10.1002/chem.200901597 CrossRefGoogle Scholar
  9. Caminade AM, Laurent R, Delavaux-Nicot B, Majoral JP (2012) “Janus” dendrimers: syntheses and properties. New J Chem 36(2):217–226.  https://doi.org/10.1039/c1nj20458k CrossRefGoogle Scholar
  10. Caminade AM, Fruchon S, Turrin CO, Poupot M, Ouali A, Maraval A, Garzoni M, Maly M, Furer V, Kovalenko V, Majoral JP, Pavan GM, Poupot R (2015) The key role of the scaffold on the efficiency of dendrimer nanodrugs. Nature Comm 6:7722.  https://doi.org/10.1038/ncomms8722 CrossRefGoogle Scholar
  11. Caminade AM, Hameau A, Majoral JP (2016a) The specific functionalization of cyclotriphosphazene for the synthesis of smart dendrimers. Dalton Trans 45:1810–1822.  https://doi.org/10.1039/c5dt03047a CrossRefGoogle Scholar
  12. Caminade AM, Ouali A, Laurent R, Turrin CO, Majoral JP (2016b) Coordination chemistry with phosphorus dendrimers. Applications as catalysts, for materials, and in biology. Coord Chem Rev 308:478–497.  https://doi.org/10.1016/j.ccr.2015.06.007 CrossRefGoogle Scholar
  13. Ciepluch K, Katir N, El Kadib A, Felczak A, Zawadzka K, Weber M, Klajnert B, Lisowska K, Caminade AM, Bousmina M, Bryszewska M, Majoral JP (2012a) Biological properties of new Viologen-phosphorus dendrimers. Mol Pharm 9(3):448–457.  https://doi.org/10.1021/mp200549c CrossRefGoogle Scholar
  14. Ciepluch K, Katir N, El Kadib A, Weber M, Caminade AM, Bousmina M, Majoral JP, Bryszewska M (2012b) Photo-physical and structural interactions between viologen phosphorus-based dendrimers and human serum albumin. J Lumin 132(6):1553–1563.  https://doi.org/10.1016/j.jlumin.2012.01.044 CrossRefGoogle Scholar
  15. Ciepluch K, Weber M, Katir N, Caminade AM, El Kadib A, Klajnert B, Majoral JP, Bryszewska M (2013) Effect of viologen-phosphorus dendrimers on acetylcholinesterase and butyrylcholinesterase activities. Int J Biol Macromol 54:119–124.  https://doi.org/10.1016/j.ijbiomac.2012.12.002 CrossRefGoogle Scholar
  16. de Brabander van den Berg EMM, Meijer EW (1993) Poly(propylene imine) dendrimers—large-scale synthesis by hetereogeneously catalyzed hydrogenations. Angew Chem Int Ed Engl 32:1308–1311.  https://doi.org/10.1002/anie.199313081 CrossRefGoogle Scholar
  17. de Jong ER, Manoury E, Daran JC, Turrin CO, Chiffre J, Sournia-Saquet A, Knoll W, Majoral JP, Caminade AM (2012) Synthesis and characterization of water-soluble ferrocene-dendrimers. J Organomet Chem 718:22–30.  https://doi.org/10.1016/j.jorganchem.2012.07.048 CrossRefGoogle Scholar
  18. de Jong ER, Deloch N, Knoll W, Turrin CO, Majoral JP, Caminade AM, Koper I (2015) Synthesis and characterization of bifunctional dendrimers: preliminary use for the coating of gold surfaces and the proliferation of human osteoblasts (HOB). New J Chem 39:7194–7205.  https://doi.org/10.1039/c5nj00620a CrossRefGoogle Scholar
  19. Deloncle R, Coppel Y, Rebout C, Majoral JP, Caminade AM (2008) Characterization of two series of nitrogen-containing dendrimers by natural abundance N-15 NMR. Magn Reson Chem 46:493–496.  https://doi.org/10.1002/mrc.2203 CrossRefGoogle Scholar
  20. Dib H, Rebout C, Laurent R, Mallet-Ladeira S, Sournia-Saquet A, Sarosi MB, Hey-Hawkins E, Majoral JP, Delavaux-Nicot B, Caminade AM (2016) Ordered layered dendrimers constructed from two known dendrimer families: inheritance and emergence of properties. Chem Eur J 22:10736–10742.  https://doi.org/10.1002/chem.201601354 CrossRefGoogle Scholar
  21. El Brahmi N, El Kazzouli S, Mignani SM, Essassi E, Aubert G, Laurent R, Caminade AM, Bousmina MM, Cresteil T, Majoral JP (2013) Original multivalent copper(II)-conjugated phosphorus dendrimers and corresponding mononuclear copper(II) complexes with antitumoral activities. Mol Pharm 10:1459–1464.  https://doi.org/10.1021/mp4000184 CrossRefGoogle Scholar
  22. Feng CL, Zhong XH, Steinhart M, Caminade AM, Majoral JP, Knoll W (2008) Functional quantum-dot/dendrimer nanotubes for sensitive detection of DNA hybridization. Small 4(5):566–571.  https://doi.org/10.1002/smll.200700453 CrossRefGoogle Scholar
  23. Franc G, Mazeres S, Turrin CO, Vendier L, Duhayon C, Caminade AM, Majoral JP (2007) Synthesis and properties of dendrimers possessing the same fluorophore(s) located either peripherally or off-center. J Org Chem 72:8707–8715.  https://doi.org/10.1021/jo701462f CrossRefGoogle Scholar
  24. Fruchon S, Poupot M, Martinet L, Turrin CO, Majoral JP, Fournie JJ, Caminade AM, Poupot R (2009) Anti-inflammatory and immunosuppressive activation of human monocytes by a bioactive dendrimer. J Leukoc Biol 85:553–562.  https://doi.org/10.1189/jlb.0608371 CrossRefGoogle Scholar
  25. Fruchon S, Mouriot S, Thiollier T, Grandin C, Caminade AM, Turrin CO, Contamin H, Poupot R (2015) Repeated intravenous injections in non-human primates demonstrate preclinical safety of an anti-inflammatory phosphorus-based dendrimer. Nanotoxicology 9:433–441.  https://doi.org/10.3109/17435390.2014.940406 CrossRefGoogle Scholar
  26. Fuchs S, Pla-Quintana A, Mazeres S, Caminade AM, Majoral JP (2008) Cationic and fluorescent “Janus” dendrimers. Org Lett 10(21):4751–4754.  https://doi.org/10.1021/ol801698k CrossRefGoogle Scholar
  27. Furer VL, Vandyukov AE, Majoral JP, Caminade AM, Gottis S, Laurent R, Kovalenko VI (2015a) DFT study of structure, IR and Raman spectra of dendrimer with P=N-P=S linkages and its complexation with gold. J Mol Struct 1084:103–113.  https://doi.org/10.1016/j.molstruc.2014.12.026 CrossRefGoogle Scholar
  28. Furer VL, Vandyukov AE, Majoral JP, Caminade AM, Gottis S, Laurent R, Kovalenko VI (2015b) Comparative DFT study of structure, reactivity and IR spectra of phosphorus-containing dendrons with P=N-P=S linkages, vinyl and azide functional groups. J Mol Struct 1091:6–15.  https://doi.org/10.1016/j.molstruc.2015.02.067 CrossRefGoogle Scholar
  29. Galliot C, Caminade AM, Dahan F, Majoral JP (1993) Synthesis, structure, and reactivity of stable PN heterocycles with 2 and 6 methyleneamine units: H2C=N-N(Me)2P(S)(Ph) and H2C=N-N(Me)6P3N3. Angew Chem Int Ed Engl 32(10):1477–1479.  https://doi.org/10.1002/anie.199314771 CrossRefGoogle Scholar
  30. Galliot C, Prevote D, Caminade AM, Majoral JP (1995) Polyaminophosphines containing dendrimers—syntheses and characterizations. J Am Chem Soc 117(20):5470–5476.  https://doi.org/10.1021/ja00125a006 CrossRefGoogle Scholar
  31. Galliot C, Larre C, Caminade AM, Majoral JP (1997) Regioselective stepwise growth of dendrimer units in the internal voids of a main dendrimer. Science 277(5334):1981–1984.  https://doi.org/10.1126/science.277.5334.1981 CrossRefGoogle Scholar
  32. Griffe L, Poupot M, Marchand P, Maraval A, Turrin CO, Rolland O, Metivier P, Bacquet G, Fournie JJ, Caminade AM, Poupot R, Majoral JP (2007) Multiplication of human natural killer cells by nanosized phosphonate-capped dendrimers. Angew Chem Int Ed 46:2523–2526.  https://doi.org/10.1002/anie.200604651 CrossRefGoogle Scholar
  33. Hameau A, Fuchs S, Laurent R, Majoral JP, Caminade AM (2011) Synthesis of dye/fluorescent functionalized dendrons based on cyclotriphosphazene. Beilstein J Org Chem 7:1577–1583.  https://doi.org/10.3762/bjoc.7.186 CrossRefGoogle Scholar
  34. Hayder M, Poupot M, Baron M, Nigon D, Turrin CO, Caminade AM, Majoral JP, Eisenberg RA, Fournie JJ, Cantagrel A, Poupot R, Davignon JL (2011) A phosphorus-based dendrimer targets inflammation and osteoclastogenesis in experimental arthritis. Science Transl Med 3:11.  https://doi.org/10.1126/scitranslmed.3002212 CrossRefGoogle Scholar
  35. Hayder M, Varilh M, Turrin CO, Saoudi A, Caminade AM, Poupot R, Liblau RS (2015) Phosphorus-based dendrimer ABP treats neuroinflammation by promoting IL-10-producing CD4(+) T cells. Biomacromolecules 16:3425–3433.  https://doi.org/10.1021/acs.biomac.5b00643 CrossRefGoogle Scholar
  36. Ielasi F, Ledall J, Anes AP, Fruchon S, Caminade AM, Poupot R, Turrin CO, Blanzat M (2016) Influence of PPH dendrimers’ surface functions on the activation of human monocytes: a study of their interactions with pure lipid model systems. Phys Chem Chem Phys 18:21871–21880.  https://doi.org/10.1039/c6cp03536a CrossRefGoogle Scholar
  37. Kannan RM, Nance E, Kannan S, Tomalia DA (2014) Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications. J Intern Med 276:579–617.  https://doi.org/10.1111/joim.12280 CrossRefGoogle Scholar
  38. Katir N, Majoral JP, El Kadib A, Caminade AM, Bousmina M (2012) Molecular and macromolecular engineering with viologens as building blocks: rational design of phosphorus-viologen dendritic structures. Eur J Org Chem 2:269–273.  https://doi.org/10.1002/ejoc.201101376 CrossRefGoogle Scholar
  39. Katir N, El Brahmi N, El Kadib A, Mignani S, Caminade AM, Bousmina M, Majoral JP (2015) Synthesis of onion-peel nanodendritic structures with sequential functional phosphorus diversity. Chem-Eur J 21(17):6400–6408.  https://doi.org/10.1002/chem.201500138 CrossRefGoogle Scholar
  40. Kazmierczak-Baranska J, Pietkiewicz A, Janicka M, Wei YQ, Turrin CO, Majoral JP, Nawrot B, Caminade AM (2010) Synthesis of a fluorescent cationic phosphorus dendrimer and preliminary biological studies of its interaction with DNA. Nucleosides Nucleotides Nucleic Acids 29:155–167.  https://doi.org/10.1080/15257771003708462 CrossRefGoogle Scholar
  41. Keller M, Colliere V, Reiser O, Caminade AM, Majoral JP, Ouali A (2013) Pyrene-tagged dendritic catalysts noncovalently grafted onto magnetic co/C nanoparticles: an efficient and recyclable system for drug synthesis. Angew Chem Int Ed 52:3626–3629.  https://doi.org/10.1002/anie.201209969 CrossRefGoogle Scholar
  42. Kim DH, Karan P, Goring P, Leclaire J, Caminade AM, Majoral JP, Gosele U, Steinhart M, Knoll W (2005) Formation of dendrimer nanotubes by layer-by-layer deposition. Small 1(1):99–102.  https://doi.org/10.1002/smll.200400024 CrossRefGoogle Scholar
  43. Knoll W, Caminade AM, Char K, Duran H, Feng CL, Gitsas A, Kim DH, Lau A, Lazzara TD, Majoral JP, Steinhart M, Yameen B, Zhong XH (2011) Nanostructuring polymeric materials by templating strategies. Small 7(10):1384–1391.  https://doi.org/10.1002/smll.201100026 CrossRefGoogle Scholar
  44. Krishna TR, Parent M, Werts MHV, Moreaux L, Gmouh S, Charpak S, Caminade AM, Majoral JP, Blanchard-Desce M (2006) Water-soluble dendrimeric two-photon tracers for in vivo imaging. Angew Chem Int Ed 45:4645–4648.  https://doi.org/10.1002/anie.200601246 CrossRefGoogle Scholar
  45. Larpent C, Genies C, Delgado APD, Caminade AM, Majoral JP, Sassi JF, Leising F (2004) Giant dendrimer-like particles from nanolatexes. Chem Commun 16:1816–1817.  https://doi.org/10.1039/b406686c CrossRefGoogle Scholar
  46. Larre C, Caminade AM, Majoral JP (1997) Chemoselective polyalkylations of phosphorus-containing dendrimers. Angew Chem Int Ed Engl 36:596–599.  https://doi.org/10.1002/anie.199705961 CrossRefGoogle Scholar
  47. Larre C, Bressolles D, Turrin C, Donnadieu B, Caminade AM, Majoral JP (1998a) Chemistry within megamolecules: Regiospecific functionalization after construction of phosphorus dendrimers. J Am Chem Soc 120:13070–13082.  https://doi.org/10.1021/ja982778e CrossRefGoogle Scholar
  48. Larre C, Donnadieu B, Caminade AM, Majoral JP (1998b) Phosphorus-containing dendrimers: chemoselective functionalization of internal layers. J Am Chem Soc 120(16):4029–4030.  https://doi.org/10.1021/ja973994a CrossRefGoogle Scholar
  49. Larre C, Donnadieu B, Caminade AM, Majoral JP (1998c) Regioselective gold complexation within the cascade structure of phosphorus-containing dendrimers. Chem Eur J 4:2031–2036.  https://doi.org/10.1002/(sici)1521-3765(19981002)4:10<2031::aid-chem2031>3.0.co;2-j CrossRefGoogle Scholar
  50. Lartigue ML, Donnadieu B, Galliot C, Caminade AM, Majoral JP, Fayet JP (1997) Large dipole moments of phosphorus-containing dendrimers. Macromolecules 30:7335–7337.  https://doi.org/10.1021/ma970570s CrossRefGoogle Scholar
  51. Launay N, Caminade AM, Lahana R, Majoral JP (1994) A general synthetic strategy for neutral phosphorus-containing dendrimers. Angew Chem Int Ed Engl 33:1589–1592.  https://doi.org/10.1002/anie.199415891 CrossRefGoogle Scholar
  52. Launay N, Caminade AM, Majoral JP (1995) Synthesis and reactivity of unusual phosphorus dendrimers—a useful divergent growth approach up to the 7th generation. J Am Chem Soc 117:3282–3283.  https://doi.org/10.1021/ja00116a037 CrossRefGoogle Scholar
  53. Launay N, Caminade AM, Majoral JP (1997) Synthesis of bowl-shaped dendrimers from generation 1 to generation 8. J Organomet Chem 529:51–58.  https://doi.org/10.1016/s0022-328x(96)06293-6 CrossRefGoogle Scholar
  54. Lazniewska J, Janaszewska A, Milowska K, Caminade AM, Mignani S, Katir N, El Kadib A, Bryszewska M, Majoral JP, Gabryelak T, Klajnert-Maculewicz B (2013) Promising low-toxicity of viologen-phosphorus dendrimers against embryonic mouse hippocampal cells. Molecules 18(10):12222–12240.  https://doi.org/10.3390/molecules181012222 CrossRefGoogle Scholar
  55. Lazzara TD, Lau KHA, Abou-Kandil AI, Caminade AM, Majoral JP, Knoll W (2010) Polyelectrolyte layer-by-layer deposition in cylindrical nanopores. ACS Nano 4(7):3909–3920.  https://doi.org/10.1021/nn1007594 CrossRefGoogle Scholar
  56. Leclaire J, Coppel Y, Caminade AM, Majoral JP (2004) Nanometric sponges made of water-soluble hydrophobic dendrimers. J Am Chem Soc 126:2304–2305.  https://doi.org/10.1021/ja039684b CrossRefGoogle Scholar
  57. Leclaire J, Dagiral R, Fery-Forgues S, Coppel Y, Donnadieu B, Caminade AM, Majoral JP (2005) Octasubstituted metal-free phthalocyanine as core of phosphorus dendrimers: a probe for the properties of the internal structure. J Am Chem Soc 127:15762–15770.  https://doi.org/10.1021/ja054797b CrossRefGoogle Scholar
  58. Ledall J, Fruchon S, Garzoni M, Pavan GM, Caminade AM, Turrin CO, Blanzat M, Poupot R (2015) Interaction studies reveal specific recognition of an anti-inflammatory polyphosphorhydrazone dendrimer by human monocytes. Nano 7:17672–17684.  https://doi.org/10.1039/c5nr03884g Google Scholar
  59. Lee OJ, Maraval V, Caminade AM, Chung K, Lau KHA, Shin K, Majoral JP, Knoll W, Kim DH (2016) Layer-by-layer self-assembly of bisdendrons: an unprecedented route to multilayer thin films. Macromol Res 24(10):851–855.  https://doi.org/10.1007/s13233-016-4128-z CrossRefGoogle Scholar
  60. Lim J, Kostiainen M, Maly J, da Costa VCP, Annunziata O, Pavan GM, Simanek EE (2013) Synthesis of large dendrimers with the dimensions of small viruses. J Am Chem Soc 135:4660–4663.  https://doi.org/10.1021/ja400432e CrossRefGoogle Scholar
  61. Maraval V, Laurent R, Donnadieu B, Mauzac M, Caminade AM, Majoral JP (2000a) Rapid synthesis of phosphorus-containing dendrimers with controlled molecular architectures: first example of surface-block, layer-block, and segment-block dendrimers issued from the same dendron. J Am Chem Soc 122(11):2499–2511.  https://doi.org/10.1021/ja992099j CrossRefGoogle Scholar
  62. Maraval V, Laurent R, Merino S, Caminade AM, Majoral JP (2000b) Michael-type addition of amines to the vinyl core of dendrons—application to the synthesis of multidendritic systems. Eur J Org Chem 3555–3568. doi: https://doi.org/10.1002/1099-0690(200011)2000:21<3555::AID-EJOC3555>3.0.CO;2-V
  63. Maraval V, Caminade AM, Majoral JP, Blais JC (2003a) Dendrimer design: how to circumvent the dilemma of a reduction of steps or an increase of function multiplicity? Angew Chem Int Ed 42:1822–1826.  https://doi.org/10.1002/anie.200250827 CrossRefGoogle Scholar
  64. Maraval V, Pyzowski J, Caminade AM, Majoral JP (2003b) “Lego” chemistry for the straightforward synthesis of dendrimers. J Org Chem 68:6043–6046.  https://doi.org/10.1021/jo0344438 CrossRefGoogle Scholar
  65. Maraval V, Maraval A, Spataro G, Caminade AM, Majoral JP, Kim DH, Knoll W (2006) Design of tailored multi-charged phosphorus surface-block dendrimers. New J Chem 30(12):1731–1736.  https://doi.org/10.1039/b610632n CrossRefGoogle Scholar
  66. Marmillon C, Gauffre F, Gulik-Krzywicki T, Loup C, Caminade AM, Majoral JP, Vors JP, Rump E (2001) Organophosphorus dendrimers as new gelators for hydrogels. Angew Chem Int Ed 40(14):2626–2629.  https://doi.org/10.1002/1521-3773(20010716)40:14<2626::aid-anie2626>3.0.co;2-f CrossRefGoogle Scholar
  67. Martinez-Ferrero E, Franc G, Mazeres S, Turrin CO, Boissiere U, Caminade AM, Majoral JP, Sanchez C (2008) Optical properties of hybrid dendritic-mesoporous titania nanocomposite films. Chem Eur J 14(25):7658–7669.  https://doi.org/10.1002/chem.200800606 CrossRefGoogle Scholar
  68. Maszewska M, Leclaire J, Cieslak M, Nawrot B, Okruszek A, Caminade AM, Majoral JP (2003) Water-soluble polycationic dendrimers with a phosphoramidothioate backbone: preliminary studies of cytotoxicity and oligonucleotide/plasmid delivery in human cell culture. Oligonucleotides 13:193–205.  https://doi.org/10.1089/154545703322460586 CrossRefGoogle Scholar
  69. Merino S, Brauge L, Caminade AM, Majoral JP, Taton D, Gnanou Y (2001) Synthesis and characterization of linear, hyperbranched, and dendrimer-like polymers constituted of the same repeating unit. Chem Eur J 7:3095–3105.  https://doi.org/10.1002/1521-3765(20010716)7:14<3095::aid-chem3095>3.0.co;2-s CrossRefGoogle Scholar
  70. Mignani S, El Brahmi N, Eloy L, Poupon J, Nicolas V, Steinmetz A, El Kazzouli S, Bousmina MM, Blanchard-Desce M, Caminade AM, Majoral JP, Cresteil T (2017) Anticancer copper(II) phosphorus dendrimers are potent proapoptotic Bax activators. Eur J Med Chem 132:142–156.  https://doi.org/10.1016/j.ejmech.2017.03.035 CrossRefGoogle Scholar
  71. Milowska K, Grochowina J, Katir N, El Kadib A, Majoral JP, Bryszewska M, Gabryelak T (2013) Viologen-phosphorus dendrimers inhibit alpha-synuclein fibrillation. Mol Pharm 10(3):1131–1137.  https://doi.org/10.1021/mp300636h CrossRefGoogle Scholar
  72. Milowska K, Szwed A, Zablocka M, Caminade AM, Majoral JP, Mignani S, Gabryelak T, Bryszewska M (2014) In vitro PAMAM, phosphorus and viologen-phosphorus dendrimers prevent rotenone-induced cell damage. Int J Pharm 474(1–2):42–49.  https://doi.org/10.1016/j.ijpharm.2014.08.010 CrossRefGoogle Scholar
  73. Mitjaville J, Caminade AM, Mathieu R, Majoral JP (1994) New synthetic strategies for phosphorus-containing cryptands and the first phosphorus spherant type compound. J Am Chem Soc 116(11):5007–5008.  https://doi.org/10.1021/ja00090a064 CrossRefGoogle Scholar
  74. Mongin O, Pla-Quintana A, Terenziani F, Drouin D, Le Droumaguet C, Caminade AM, Majoral JP, Blanchard-Desce M (2007) Organic nanodots for multiphotonics: synthesis and photophysical studies. New J Chem 31:1354–1367.  https://doi.org/10.1039/b702452p CrossRefGoogle Scholar
  75. Mongin O, Rouxel C, Robin AC, Pla-Quintana A, Krishna TR, Recher G, Tiaho F, Caminade AM, Majoral JP, Blanchard-Desce M (2008) Brilliant organic nanodots: novel nano-objects for bionanophotonics. In: Heckman EM, Singh TB, Yoshida J (eds) Nanobiosystems: processing, characterization, and applications, Spie-Int Soc Optical Engineering, Bellingham, Vol. 7040Google Scholar
  76. Mongin O, Rouxel C, Vabre JM, Mir Y, Pla-Quintana A, Wei YQ, Caminade AM, Majoral JP, Blanchard-Desce M (2009) Customized multiphotonics nanotools for bioapplications: soft organic nanodots as an eco-friendly alternative to quantum dots. In: Kobayashi N, Ouchen F, Rau I (eds) Nanobiosystems: processing, characterization, and applications Ii. Proceedings of SPIE-The International Society for Optical Engineering, vol 7403. Spie-Int Soc Optical Engineering, BellinghamGoogle Scholar
  77. Moreno S, Szwed A, El Brahmi N, Milowska K, Kurowska J, Fuentes-Paniagua E, Pedziwiatr-Werbicka E, Gabryelak T, Katir N, de la Mata FJ, Munoz-Fernandez MA, Gomez-Ramirez R, Caminade AM, Majoral JP, Bryszewska M (2015) Synthesis, characterization and biological properties of new hybrid carbosilane-viologen-phosphorus dendrimers. RSC Adv 5(33):25942–25958.  https://doi.org/10.1039/c5ra00960j CrossRefGoogle Scholar
  78. Neumann P, Dib H, Caminade AM, Hey-Hawkins E (2015a) Redox control of a dendritic ferrocenyl-based homogeneous catalyst. Angew Chem Int Ed 54:311–314.  https://doi.org/10.1002/anie.201408314 CrossRefGoogle Scholar
  79. Neumann P, Dib H, Sournia-Saquet A, Grell T, Handke M, Caminade AM, Hey-Hawkins E (2015b) Ruthenium complexes with dendritic ferrocenyl phosphanes: synthesis, characterization, and application in the catalytic redox isomerization of allylic alcohols. Chem Eur J 21:6590–6604.  https://doi.org/10.1002/chem.201406489 CrossRefGoogle Scholar
  80. Portevin D, Poupot M, Rolland O, Turrin CO, Fournie JJ, Majoral JP, Caminade AM, Poupot R (2009) Regulatory activity of azabisphosphonate-capped dendrimers on human CD4(+) T cell proliferation enhances ex-vivo expansion of NK cells from PBMCs for immunotherapy. J Transl Med 7:13.  https://doi.org/10.1186/1479-5876-7-82 CrossRefGoogle Scholar
  81. Poupot M, Griffe L, Marchand P, Maraval A, Rolland O, Martinet L, L'Faqihi-Olive FE, Turrin CO, Caminade AM, Fournie JJ, Majoral JP, Poupot R (2006) Design of phosphorylated dendritic architectures to promote human monocyte activation. FASEB J 20:2339–2351.  https://doi.org/10.1096/fj.06-5742com CrossRefGoogle Scholar
  82. Poupot M, Turrin CO, Caminade AM, Fournie JJ, Attal M, Poupot R, Fruchon S (2016) Poly(phosphorhydrazone) dendrimers: yin and yang of monocyte activation for human NK cell amplification applied to immunotherapy against multiple myeloma. Nanomedicine Nanotech Biol Med 12:2321–2330.  https://doi.org/10.1016/j.nano.2016.07.009 CrossRefGoogle Scholar
  83. Riegert D, Pla-Quintana A, Fuchs S, Laurent R, Turrin CO, Duhayon C, Majoral JP, Chaumonnot A, Caminade AM (2013) Diversified strategies for the synthesis of bifunctional dendrimeric structures. Eur J Org Chem 2013:5414–5422.  https://doi.org/10.1002/ejoc.201300456 CrossRefGoogle Scholar
  84. Riegert D, Bareille L, Laurent R, Majoral JP, Caminade AM, Chaumonnot A (2016) Silica functionalized by bifunctional dendrimers: hybrid nanomaterials for trapping CO2. Eur J Inorg Chem 19:3103–3110.  https://doi.org/10.1002/ejic.201600426 CrossRefGoogle Scholar
  85. Rolland O, Griffe L, Poupot M, Maraval A, Ouali A, Coppel Y, Fournie JJ, Bacquet G, Turrin CO, Caminade AM, Majoral JP, Poupot R (2008) Tailored control and optimisation of the number of phosphonic acid termini on phosphorus-containing dendrimers for the ex-vivo activation of human monocytes. Chem Eur J 14:4836–4850.  https://doi.org/10.1002/chem.200701063 CrossRefGoogle Scholar
  86. Rouxel C, Charlot M, Mongin O, Krishna TR, Caminade AM, Majoral JP, Blanchard-Desce M (2012) From graftable biphotonic chromophores to water-soluble organic nanodots for biophotonics: the importance of environmental effects. Chem Eur J 18:16450–16462.  https://doi.org/10.1002/chem.201202832 CrossRefGoogle Scholar
  87. Salamonczyk GM, Kuznikowski M, Skowronska A (2000) A divergent synthesis of thiophosphate-based dendrimers. Tetrahedron Lett 41:1643–1645.  https://doi.org/10.1016/S0040-4039(00)00005-8 CrossRefGoogle Scholar
  88. Sebastian RM, Magro G, Caminade AM, Majoral JP (2000) Dendrimers with N,N-disubstituted hydrazines as end groups, useful precursors for the synthesis of water-soluble dendrimers capped with carbohydrate, carboxylic or boronic acid derivatives. Tetrahedron 56(34):6269–6277.  https://doi.org/10.1016/s0040-4020(00)00576-7 CrossRefGoogle Scholar
  89. Sebastian RM, Blais JC, Caminade AM, Majoral JP (2002) Synthesis and photochemical behavior of phosphorus dendrimers containing azobenzene units within the branches and/or on the surface. Chem Eur J 8:2172–2183.  https://doi.org/10.1002/1521-3765(20020503)8:9<2172::aid-chem2172>3.0.co;2-g CrossRefGoogle Scholar
  90. Servin P, Rebout C, Laurent R, Peruzzini M, Caminade AM, Majoral JP (2007) Reduced number of steps for the synthesis of dense and highly functionalized dendrimers. Tetrahedron Lett 48:579–583.  https://doi.org/10.1016/j.tetlet.2006.11.112 CrossRefGoogle Scholar
  91. Shakhbazau A, Mishra M, Chu TH, Brideau C, Cummins K, Tsutsui S, Shcharbin D, Majoral JP, Mignani S, Blanchard-Desce M, Bryszewska M, Yong VW, Stys PK, van Minnen J (2015) Fluorescent phosphorus dendrimer as a spectral nanosensor for macrophage polarization and fate tracking in spinal cord injury. Macromol Biosci 15:1523–1534.  https://doi.org/10.1002/mabi.201500150 CrossRefGoogle Scholar
  92. Slany M, Bardaji M, Casanove MJ, Caminade AM, Majoral JP, Chaudret B (1995) Dendrimer surface-chemistry—facile route to polyphosphines and their gold complexes. J Am Chem Soc 117:9764–9765.  https://doi.org/10.1021/ja00143a023 CrossRefGoogle Scholar
  93. Slany M, Bardaji M, Caminade AM, Chaudret B, Majoral JP (1997) Versatile complexation ability of very large phosphino-terminated dendrimers. Inorg Chem 36(9):1939–1945.  https://doi.org/10.1021/ic961258m CrossRefGoogle Scholar
  94. Szwed A, Milowska K, Ionov M, Shcharbin D, Moreno S, Gomez-Ramirez R, de la Mata FJ, Majoral JP, Bryszewska M, Gabryelak T (2016) Interaction between dendrimers and regulatory proteins. Comparison of effects of carbosilane and carbosilane-viologen-phosphorus dendrimers. RSC Adv 6(100):97546–97554.  https://doi.org/10.1039/c6ra16558c CrossRefGoogle Scholar
  95. Tomalia DA (2009) In quest of a systematic framework for unifying and defining nanoscience. J Nanoparticle Research 11:1251–1310.  https://doi.org/10.1007/s11051-009-9632-z CrossRefGoogle Scholar
  96. Tomalia DA (2010) Dendrons/dendrimers: quantized, nano-element like building blocks for soft-soft and soft-hard nano-compound synthesis. Soft Matter 6(3):456–474.  https://doi.org/10.1039/b917370f CrossRefGoogle Scholar
  97. Tomalia DA (2012) Dendritic effects: dependency of dendritic nano-periodic property patterns on critical nanoscale design parameters (CNDPs). New J Chem 36:264–281.  https://doi.org/10.1039/c1nj20501c CrossRefGoogle Scholar
  98. Tomalia DA, Khanna SN (2016) A systematic framework and nanoperiodic concept for unifying nanoscience: hard/soft nanoelements, superatoms, meta-atoms, new emerging properties, periodic property patterns, and predictive Mendeleev-like nanoperiodic tables. Chem Rev 116:2705–2774.  https://doi.org/10.1021/acs.chemrev.5b00367 CrossRefGoogle Scholar
  99. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers—starburst-dendritic macromolecules. Polymer J 17:117–132.  https://doi.org/10.1295/polymj.17.117 CrossRefGoogle Scholar
  100. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1986) Dendritic macromolecules. Synthesis of starburst dendrimers. Macromolecules 19:2466–2468.  https://doi.org/10.1021/ma00163a029 CrossRefGoogle Scholar
  101. Turrin CO, Chiffre J, de Montauzon D, Daran JC, Caminade AM, Manoury E, Balavoine G, Majoral JP (2000) Phosphorus-containing dendrimers with ferrocenyl units at the core, within the branches, and on the periphery. Macromolecules 33:7328–7336.  https://doi.org/10.1021/ma992178f CrossRefGoogle Scholar
  102. Turrin CO, Chiffre J, Daran JC, de Montauzon D, Caminade AM, Manoury E, Balavoine G, Majoral JP (2001) New chiral phosphorus-containing dendrimers with ferrocenes on the periphery. Tetrahedron 57:2521–2536.  https://doi.org/10.1016/s0040-4020(01)00080-1 CrossRefGoogle Scholar
  103. Turrin CO, Chiffre J, Daran JC, de Montauzon D, Balavoine G, Manoury E, Caminade AM, Majoral JP (2002a) New phosphorus-containing dendrimers with ferrocenyl units in each layer. C R Chim 5:309–318.  https://doi.org/10.1016/s1631-0748(02)01382-6 CrossRefGoogle Scholar
  104. Turrin CO, Chiffre J, de Montauzon D, Balavoine G, Manoury E, Caminade AM, Majoral JP (2002b) Behavior of an optically active ferrocene chiral shell located within phosphorus-containing dendrimers. Organometallics 21:1891–1897.  https://doi.org/10.1021/om010956y CrossRefGoogle Scholar
  105. Zhou LL, Roovers J (1993) Synthesis of novel carbosilane dendritic macromolecules. Macromolecules 26:963–968.  https://doi.org/10.1021/ma00057a013 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.CNRS, LCC (Laboratoire de Chimie de Coordination)Toulouse Cedex 4France
  2. 2.LCC-CNRS, Université de Toulouse, CNRSToulouseFrance

Personalised recommendations