Advertisement

Nanoscale surface modification of Li-rich layered oxides for high-capacity cathodes in Li-ion batteries

  • Xiwei Lan
  • Yue Xin
  • Libin Wang
  • Xianluo Hu
Review
Part of the following topical collections:
  1. 20th Anniversary Issue: From the editors

Abstract

Li-rich layered oxides (LLOs) have been developed as a high-capacity cathode material for Li-ion batteries, but the structural complexity and unique initial charging behavior lead to several problems including large initial capacity loss, capacity and voltage fading, poor cyclability, and inferior rate capability. Since the surface conditions are critical to electrochemical performance and the drawbacks, nanoscale surface modification for improving LLO’s properties is a general strategy. This review mainly summarizes the surface modification of LLOs and classifies them into three types of surface pre-treatment, surface gradient doping, and surface coating. Surface pre-treatment usually introduces removal of Li2O for lower irreversible capacity while surface doping is aimed to stabilize the structure during electrochemical cycling. Surface coating layers with different properties, protective layers to suppress the interface side reaction, coating layers related to structural transformation, and electronic/ionic conductive layers for better rate capability, can avoid the shortcomings of LLOs. In addition to surface modification for performance enhancement, other strategies can also be investigated to achieve high-performance LLO-based cathode materials.

Keywords

Li-rich layered oxides Nanoscale surface modification Surface pre-treatment Surface doping Surface coating layer Energy storage 

Notes

Acknowledgements

This work was supported by Ministry of Science and Technology of the People’s Republic of China (2015AA034601), National Natural Science Foundation of China (51772116, 51472098, and 51522205), and the fund for Academic Frontier Youth Team of HUST.

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Ahn J, Kim JH, Cho BW, Chung KY, Kim S, Choi JW, Oh SH (2017) Nanoscale zirconium-abundant surface layers on lithium- and manganese-rich layered oxides for high-rate lithium-ion batteries. Nano Lett 17:7869–7877.  https://doi.org/10.1021/acs.nanolett.7b04158 CrossRefGoogle Scholar
  2. Alaboina PK, Uddin MJ, Cho SJ (2017) Nanoprocess and nanoscale surface functionalization on cathode materials for advanced lithium-ion batteries. Nanoscale 9:15736–15752.  https://doi.org/10.1039/c7nr02600e CrossRefGoogle Scholar
  3. Amalraj F, Talianker M, Markovsky B, Burlaka L, Leifer N, Goobes G, Erickson EM, Haik O, Grinblat J, Zinigrad E, Aurbach D, Lampert JK, Shin JY, Schulz-Dobrick M, Garsuch A (2013) Studies of Li and Mn-rich Lix[MnNiCo]O2 electrodes: electrochemical performance, structure, and the effect of the aluminum fluoride coating. J Electrochem Soc 160:A2220–A2233.  https://doi.org/10.1149/2.091311jes CrossRefGoogle Scholar
  4. Amine K (1999) Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries. Electrochem Solid State Lett 3:178.  https://doi.org/10.1149/1.1390994 CrossRefGoogle Scholar
  5. Armand M, Tarascon J-M (2008) Building better batteries. Nature 451:652–657CrossRefGoogle Scholar
  6. Armstrong AR, Bruce PG (1996) Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381:499–500CrossRefGoogle Scholar
  7. Armstrong AR, Holzapfel M, Novák P, Johnson CS, Kang S-H, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc 128:8694–8698CrossRefGoogle Scholar
  8. Ates MN, Jia Q, Shah A, Busnaina A, Mukerjee S, Abraham KM (2014) Mitigation of layered to spinel conversion of a Li-rich layered metal oxide cathode material for Li-ion batteries. J Electrochem Soc 161:A290–A301.  https://doi.org/10.1149/2.040403jes CrossRefGoogle Scholar
  9. Bai M, Wang Z, Li X, Guo H, He Z, Zhao J (2016) Enhanced electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 via lithium boron oxide glass surface treatment. Solid State Ionics 292:66–69.  https://doi.org/10.1016/j.ssi.2016.05.013 CrossRefGoogle Scholar
  10. Bareno J, Lei CH, Wen JG, Kang SH, Petrov I, Abraham DP (2010) Local structure of layered oxide electrode materials for lithium-ion batteries. Adv Mater 22:1122–1127.  https://doi.org/10.1002/adma.200904247 CrossRefGoogle Scholar
  11. Bian X, Fu Q, Bie X, Yang P, Qiu H, Pang Q, Chen G, Du F, Wei Y (2015a) Improved electrochemical performance and thermal stability of Li-excess Li1.18Co0.15Ni0.15Mn0.52O2 cathode material by Li3PO4 surface coating. Electrochim Acta 174:875–884.  https://doi.org/10.1016/j.electacta.2015.06.085 CrossRefGoogle Scholar
  12. Bian X, Fu Q, Qiu H, Du F, Gao Y, Zhang L, Zou B, Chen G, Wei Y (2015b) High-performance Li(Li0.18Ni0.15Co0.15Mn0.52)O2@Li4M5O12 heterostructured cathode material coated with a lithium borate oxide glass layer. Chem Mater 27:5745–5754.  https://doi.org/10.1021/acs.chemmater.5b02331 CrossRefGoogle Scholar
  13. Bian X, Fu Q, Pang Q, Gao Y, Wei Y, Zou B, Du F, Chen G (2016) Multi-functional surface engineering for Li-excess layered cathode material targeting excellent electrochemical and thermal safety properties. ACS Appl Mater Interfaces 8:3308–3318.  https://doi.org/10.1021/acsami.5b11199 CrossRefGoogle Scholar
  14. Boulineau A, Simonin L, Colin JF, Bourbon C, Patoux S (2013) First evidence of manganese–nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries. Nano Lett 13:3857–3863.  https://doi.org/10.1021/nl4019275 CrossRefGoogle Scholar
  15. Bréger J, Jiang M, Dupré N, Meng YS, Shao-Horn Y, Ceder G, Grey CP (2005) High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3–Li[Ni1/2Mn1/2]O2 solid solution. J Solid State Chem 178:2575–2585.  https://doi.org/10.1016/j.jssc.2005.05.027 CrossRefGoogle Scholar
  16. Carroll KJ, Qian D, Fell C, Calvin S, Veith GM, Chi M, Baggetto L, Meng YS (2013) Probing the electrode/electrolyte interface in the lithium excess layered oxide Li1.2Ni0.2Mn0.6O2. Phys Chem Chem Phys 15:11128–11138.  https://doi.org/10.1039/c3cp51927a CrossRefGoogle Scholar
  17. Chen C, Geng T, Du C, Zuo P, Cheng X, Ma Y, Yin G (2016a) Oxygen vacancies in SnO2 surface coating to enhance the activation of layered Li-rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for Li-ion batteries. J Power Sources 331:91–99.  https://doi.org/10.1016/j.jpowsour.2016.09.051 CrossRefGoogle Scholar
  18. Chen CJ, Pang WK, Mori T, Peterson VK, Sharma N, Lee PH, Wu SH, Wang CC, Song YF, Liu RS (2016b) The origin of capacity fade in the Li2MnO3·LiMO2 (M = Li, Ni, Co, Mn) microsphere positive eectrode: an operando neutron diffraction and transmission X-ray microscopy study. J Am Chem Soc 138:8824–8833.  https://doi.org/10.1021/jacs.6b03932 CrossRefGoogle Scholar
  19. Chen D, Tu W, Chen M, Hong P, Zhong X, Zhu Y, Yu Q, Li W (2016c) Synthesis and performances of Li-rich@AlF3@graphene as cathode of lithium ion battery. Electrochim Acta 193:45–53.  https://doi.org/10.1016/j.electacta.2016.02.043 CrossRefGoogle Scholar
  20. Chen D, Zheng F, Li L, Chen M, Zhong X, Li W, Lu L (2017a) Effect of Li3PO4 coating of layered lithium-rich oxide on electrochemical performance. J Power Sources 341:147–155.  https://doi.org/10.1016/j.jpowsour.2016.11.020 CrossRefGoogle Scholar
  21. Chen S, Zheng Y, Lu Y, Su Y, Bao L, Li N, Li Y, Wang J, Chen R, Wu F (2017b) Enhanced electrochemical performance of layered lithium-rich cathode materials by constructing spinel-structure skin and ferric oxide islands. ACS Appl Mater Interfaces 9:8669–8678.  https://doi.org/10.1021/acsami.6b14862 CrossRefGoogle Scholar
  22. Cheng J, Li X, He Z, Wang Z, Guo H, Peng W (2016) Significant improved electrochemical performance of layered Li1.2Mn0.54Co0.13Ni0.13O2 via graphene surface modification. Mater Technol 31:658–665.  https://doi.org/10.1080/10667857.2016.1219086 CrossRefGoogle Scholar
  23. Cho E, Kim K, Jung C, Seo S-W, Min K, Lee HS, Park G-S, Shin J (2017) Overview of the oxygen behavior in the degradation of Li2MnO3 cathode material. J Phys Chem 121:21118–21127.  https://doi.org/10.1021/acs.jpcc.7b04937 Google Scholar
  24. Choi W, Benayard A, Park J-H, Park J, Doo S-G, Mun J (2014) Versatile coating of lithium conductive Li2TiF6 on over-lithiated layered oxide in lithium-ion batteries. Electrochim Acta 117:492–497.  https://doi.org/10.1016/j.electacta.2013.11.184 CrossRefGoogle Scholar
  25. Chong S, Wu Y, Chen Y, Shu C, Liu Y (2017) A strategy of constructing spherical core–shell structure of Li1.2Ni0.2Mn0.6O2@Li1.2Ni0.4Mn0.4O2 cathode material for high-performance lithium-ion batteries. J Power Sources 356:153–162.  https://doi.org/10.1016/j.jpowsour.2017.04.081 CrossRefGoogle Scholar
  26. Cong L-N, Gao X-G, Ma S-C, Guo X, Zeng Y-P, Tai L-H, Wang R-S, Xie H-M, Sun L-Q (2014) Enhancement of electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification with Li4Ti5O12. Electrochim Acta 115:399–406.  https://doi.org/10.1016/j.electacta.2013.10.117 CrossRefGoogle Scholar
  27. Croy JR, Balasubramanian M, Kim D, Kang S-H, Thackeray MM (2011) Designing high-capacity, lithium-ion cathodes using X-ray absorption spectroscopy. Chem Mater 23:5415–5424.  https://doi.org/10.1021/cm2026703 CrossRefGoogle Scholar
  28. Croy JR, Kim D, Balasubramanian M, Gallagher K, Kang S-H, Thackeray MM (2012) Countering the voltage decay in high capacity xLi2MnO3·(1–x)LiMO2 electrodes (M=Mn, Ni, Co) for Li+-ion batteries. J Electrochem Soc 159:A781.  https://doi.org/10.1149/2.080206jes CrossRefGoogle Scholar
  29. Ding F, Li J, Deng F, Xu G, Liu Y, Yang K, Kang F (2017a) Surface heterostructure induced by PrPO4 modification in Li1.2[Mn0.54Ni0.13Co0.13]O2 cathode material for high-performance lithium-ion batteries with mitigating voltage decay. ACS Appl Mater Interfaces 9:27936–27945.  https://doi.org/10.1021/acsami.7b07221 CrossRefGoogle Scholar
  30. Ding Z, Xu M, Liu J, Huang Q, Chen L, Wang P, Ivey DG, Wei W (2017b) Understanding the enhanced kinetics of gradient-chemical-doped lithium-rich cathode material. ACS Appl Mater Interfaces 9:20519–20526.  https://doi.org/10.1021/acsami.7b02944 CrossRefGoogle Scholar
  31. Erickson EM, Schipper F, Penki TR, Shin J-Y, Erk C, Chesneau F-F, Markovsky B, Aurbach D (2017) Review—recent advances and remaining challenges for lithium ion battery cathodes. J Electrochem Soc 164:A6341–A6348.  https://doi.org/10.1149/2.0461701jes CrossRefGoogle Scholar
  32. Fell CR, Carroll KJ, Chi M, Meng YS (2010) Synthesis–structure–property relations in layered, “Li-excess” oxides electrode materials Li[Li1/3−2x/3NixMn2/3−x/3]O2 (x=1/3, 1/4, and 1/5). J Electrochem Soc 157:A1202.  https://doi.org/10.1149/1.3473830 CrossRefGoogle Scholar
  33. Feng X, Gao Y, Ben L, Yang Z, Wang Z, Chen L (2016) Enhanced electrochemical performance of Ti-doped Li1.2Mn0.54Co0.13Ni0.13O2 for lithium-ion batteries. J Power Sources 317:74–80.  https://doi.org/10.1016/j.jpowsour.2016.03.101 CrossRefGoogle Scholar
  34. Fu Q, Du F, Bian X, Wang Y, Yan X, Zhang Y, Zhu K, Chen G, Wang C, Wei Y (2014) Electrochemical performance and thermal stability of Li1.18Co0.15Ni0.15Mn0.52O2 surface coated with the ionic conductor Li3VO4. J Mater Chem A 2:7555. doi: https://doi.org/10.1039/c4ta00189c
  35. Gao K, Zhao S-X, Guo S-T, Nan C-W (2016) Improving rate capacity and cycling performance of lithium-rich high-Mn Li1.8[Mn0.7Co0.15Ni0.15]O2.675 cathode materials by Li2SiO3 coating. Electrochim Acta 206:1–9.  https://doi.org/10.1016/j.electacta.2016.04.085 CrossRefGoogle Scholar
  36. Genevois C, Koga H, Croguennec L, Ménétrier M, Delmas C, Weill F (2014) Insight into the atomic structure of cycled lithium-rich layered oxide Li1.20Mn0.54Co0.13Ni0.13O2 using HAADF STEM and electron nanodiffraction. J Phys Chem 119:75–83.  https://doi.org/10.1021/jp509388j Google Scholar
  37. Gu M, Belharouak I, Zheng J, Wu H, Xiao J, Genc A, Amine K, Thevuthasan S, Baer DR, Zhang J-G (2012) Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 7:760–767CrossRefGoogle Scholar
  38. Gu M, Genc A, Belharouak I, Wang D, Amine K, Thevuthasan S, Baer DR, Zhang J-G, Browning ND, Liu J, Wang C (2013) Nanoscale phase separation, cation ordering, and surface chemistry in pristine Li1.2Ni0.2Mn0.6O2 for Li-ion batteries. Chem Mater 25:2319–2326.  https://doi.org/10.1021/cm4009392 CrossRefGoogle Scholar
  39. Gummow R, De Kock A, Thackeray M (1994) Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells. Solid State Ionics 69:59–67CrossRefGoogle Scholar
  40. Guo S, Yu H, Liu P, Liu X, Li D, Chen M, Ishida M, Zhou H (2014) Surface coating of lithium–manganese-rich layered oxides with delaminated MnO2 nanosheets as cathode materials for Li-ion batteries. J Mater Chem A 2:4422.  https://doi.org/10.1039/c3ta15206e CrossRefGoogle Scholar
  41. Guo L, Zhao N, Li J, He C, Shi C, Liu E (2015) Surface double phase network modified lithium rich layered oxides with improved rate capability for Li-ion batteries. ACS Appl Mater Interfaces 7:391–399.  https://doi.org/10.1021/am506354e CrossRefGoogle Scholar
  42. Guohua L, Ikuta H, Uchida T, Wakihara M (1996) The spinel phases LiMyMn2−yO4 (M = Co, Cr, Ni) as the cathode for rechargeable lithium batteries. J Electrochem Soc 143(1):178–182CrossRefGoogle Scholar
  43. Han E, Li Y, Zhu L, Zhao L (2014a) The effect of MgO coating on Li1.17Mn0.48Ni0.23Co0.12O2 cathode material for lithium ion batteries. Solid State Ionics 255:113–119.  https://doi.org/10.1016/j.ssi.2013.12.018 CrossRefGoogle Scholar
  44. Han S, Qiu B, Wei Z, Xia Y, Liu Z (2014b) Surface structural conversion and electrochemical enhancement by heat treatment of chemical pre-delithiation processed lithium-rich layered cathode material. J Power Sources 268:683–691.  https://doi.org/10.1016/j.jpowsour.2014.06.106 CrossRefGoogle Scholar
  45. Han JG, Lee SJ, Lee J, Kim JS, Lee KT, Choi NS (2015) Tunable and robust phosphite-derived surface film to protect lithium-rich cathodes in lithium-ion batteries. ACS Appl Mater Interfaces 7:8319–8329.  https://doi.org/10.1021/acsami.5b01770 CrossRefGoogle Scholar
  46. He Z, Wang Z, Guo H, Li X, Xianwen W, Yue P, Wang J (2013) A simple method of preparing graphene-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium-ion batteries. Mater Lett 91:261–264.  https://doi.org/10.1016/j.matlet.2012.09.115 CrossRefGoogle Scholar
  47. He F, Wang X, Du C, Baker AP, Wu J, Zhang X (2015) The effect of samaria doped ceria coating on the performance of Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion battery. Electrochim Acta 153:484–491.  https://doi.org/10.1016/j.electacta.2014.11.139 CrossRefGoogle Scholar
  48. He H, Zan L, Zhang Y (2016a) Effects of amorphous V2O5 coating on the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode material for Li-ion batteries. J Alloys Compd 680:95–104.  https://doi.org/10.1016/j.jallcom.2016.04.115 CrossRefGoogle Scholar
  49. He X, Wang J, Wang R, Qiu B, Frielinghaus H, Niehoff P, Liu H, Stan MC, Paillard E, Winter M, Li J (2016b) A 3D porous Li-rich cathode material with an in situ modified surface for high performance lithium ion batteries with reduced voltage decay. J Mater Chem A 4:7230–7237.  https://doi.org/10.1039/c6ta01448h CrossRefGoogle Scholar
  50. Hong J, Lim H-D, Lee M, Kim S-W, Kim H, Oh S-T, Chung G-C, Kang K (2012) Critical role of oxygen evolved from layered Li–excess metal oxides in lithium rechargeable batteries. Chem Mater 24:2692–2697.  https://doi.org/10.1021/cm3005634 CrossRefGoogle Scholar
  51. Hong J, Gwon H, Jung S-K, Ku K, Kang K (2015) Lithium-excess layered cathodes for lithium rechargeable batteries. J Electrochem Soc 162:A2447–A2467CrossRefGoogle Scholar
  52. Hou M, Liu J, Guo S, Yang J, Wang C, Xia Y (2014) Enhanced electrochemical performance of Li-rich layered cathode materials by surface modification with P2O5. Electrochem Commun 49:83–87.  https://doi.org/10.1016/j.elecom.2014.10.009 CrossRefGoogle Scholar
  53. Hy S, Cheng J-H, Liu J-Y, Pan C-J, Rick J, Lee J-F, Chen J-M, Hwang BJ (2014a) Understanding the role of Ni in stabilizing the lithium-rich high-capacity cathode material Li[NixLi(1–2x)/3Mn(2–x)/3]O2(0≤x≤0.5). Chem Mater 26:6919–6927.  https://doi.org/10.1021/cm501664y CrossRefGoogle Scholar
  54. Hy S, Felix F, Rick J, Su WN, Hwang BJ (2014b) Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[NixLi(1−2x)/3Mn(2−x)/3]O2 (0 ≤ x ≤ 0.5). J Am Chem Soc 136:999–1007.  https://doi.org/10.1021/ja410137s CrossRefGoogle Scholar
  55. Jarvis KA, Deng Z, Allard LF, Manthiram A, Ferreira PJ (2011) Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution. Chem Mater 23:3614–3621.  https://doi.org/10.1021/cm200831c CrossRefGoogle Scholar
  56. Jarvis K, Wang C-C, Varela M, Unocic RR, Manthiram A, Ferreira PJ (2017) Surface reconstruction in Li-rich layered oxides of Li-ion batteries. Chem Mater 29:7668–7674.  https://doi.org/10.1021/acs.chemmater.7b00120 CrossRefGoogle Scholar
  57. Jiang M, Key B, Meng YS, Grey CP (2009) Electrochemical and structural study of the layered, “Li-excess” lithium-ion battery electrode material Li[Li1/9Ni1/3Mn5/9]O2. Chem Mater 21:2733–2745.  https://doi.org/10.1021/cm900279u CrossRefGoogle Scholar
  58. Jiang KC, Wu XL, Yin YX, Lee JS, Kim J, Guo YG (2012) Superior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries. ACS Appl Mater Interfaces 4:4858–4863.  https://doi.org/10.1021/am301202a CrossRefGoogle Scholar
  59. Jin Y, Xu Y, Sun X, Xiong L, Mao S (2016) Electrochemically active MnO2 coated Li1.2Ni0.18Co0.04Mn0.58O2 cathode with highly improved initial coulombic efficiency. Appl Surf Sci 384:125–134.  https://doi.org/10.1016/j.apsusc.2016.04.136 CrossRefGoogle Scholar
  60. Jin Y, Xu Y, Xiong L, Sun X, Li L, Li L (2017) Improved electrochemical performances of Li- and Mn-rich layered oxides 0.4Li4/3Mn2/3O2·0.6LiNi1/3Co1/3Mn1/3O2 cathode material by Co3O4 coating. Solid State Ionics 310:62–70.  https://doi.org/10.1016/j.ssi.2017.07.012 CrossRefGoogle Scholar
  61. Johnson CS, Kim JS, Lefief C, Li N, Vaughey JT, Thackeray MM (2004) The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1−x)LiMn0.5Ni0.5O2 electrodes. Electrochem Commun 6:1085–1091.  https://doi.org/10.1016/j.elecom.2004.08.002 CrossRefGoogle Scholar
  62. Johnson CS, Li N, Vaughey JT, Hackney SA, Thackeray MM (2005) Lithium–manganese oxide electrodes with layered–spinel composite structures xLi2MnO3·(1 − x)Li1+yMn2−yO4 (0 < x < 1, 0 ⩽ y ⩽ 0.33) for lithium batteries. Electrochem Commun 7:528–536.  https://doi.org/10.1016/j.elecom.2005.02.027 CrossRefGoogle Scholar
  63. Kang SH, Amine K (2005) Layered Li(Li0.2Ni0.15+0.5zCo0.10Mn0.55−0.5z)O2−zFz cathode materials for Li-ion secondary batteries. J Power Sources 146:654–657.  https://doi.org/10.1016/j.jpowsour.2005.03.152 CrossRefGoogle Scholar
  64. Kang S-H, Thackeray MM (2009) Enhancing the rate capability of high capacity xLi2MnO3·(1−x)LiMO2 (M = Mn, Ni, Co) electrodes by Li–Ni–PO4 treatment. Electrochem Commun 11:748–751.  https://doi.org/10.1016/j.elecom.2009.01.025 CrossRefGoogle Scholar
  65. Kang SH, Johnson CS, Vaughey JT, Amine K, Thackeray MM (2006) The effects of acid treatment on the electrochemical properties of 0.5Li2MnO3·0.5LiNi0.44Co0.25Mn0.31O2 electrodes in lithium cells. J Electrochem Soc 153:A1186.  https://doi.org/10.1149/1.2194764 CrossRefGoogle Scholar
  66. Kang SH, Kempgens P, Greenbaum S, Kropf AJ, Amine K, Thackeray MM (2007) Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M = Mn0.5−xNi0.5−xCo2x, 0 ≤ x ≤ 0.5). J Mater Chem 17:2069–2077.  https://doi.org/10.1039/b618715c CrossRefGoogle Scholar
  67. Kim D, Sandi G, Croy JR, Gallagher KG, Kang SH, Lee E, Slater MD, Johnson CS, Thackeray MM (2012) Composite 'layered-layered-spinel' cathode structures for lithium-ion batteries. J Electrochem Soc 160:A31–A38.  https://doi.org/10.1149/2.049301jes CrossRefGoogle Scholar
  68. Kim IT, Knight JC, Celio H, Manthiram A (2014) Enhanced electrochemical performances of Li-rich layered oxides by surface modification with reduced graphene oxide/AlPO4 hybrid coating. J Mater Chem A 2:8696.  https://doi.org/10.1039/c4ta00898g CrossRefGoogle Scholar
  69. Kim S, Cho W, Zhang X, Oshima Y, Choi JW (2016) A stable lithium-rich surface structure for lithium-rich layered cathode materials. Nat Commun 7:13598.  https://doi.org/10.1038/ncomms13598 CrossRefGoogle Scholar
  70. Ko M, Oh P, Chae S, Cho W, Cho J (2015) Considering critical factors of Li-rich cathode and Si anode materials for practical Li-ion cell applications. Small 11:4058–4073.  https://doi.org/10.1002/smll.201500474 CrossRefGoogle Scholar
  71. Kobayashi G, Irii Y, Matsumoto F, Ito A, Ohsawa Y, Yamamoto S, Cui Y, Son J-Y, Sato Y (2016) Improving cycling performance of Li-rich layered cathode materials through combination of Al2O3-based surface modification and stepwise precycling. J Power Sources 303:250–256.  https://doi.org/10.1016/j.jpowsour.2015.11.014 CrossRefGoogle Scholar
  72. Koga H, Croguennec L, Ménétrier M, Mannessiez P, Weill F, Delmas C (2013a) Different oxygen redox participation for bulk and surface: a possible global explanation for the cycling mechanism of Li1.20Mn0.54Co0.13Ni0.13O2. J Power Sources 236:250–258.  https://doi.org/10.1016/j.jpowsour.2013.02.075 CrossRefGoogle Scholar
  73. Koga H, Croguennec L, Menetrier M, Douhil K, Belin S, Bourgeois L, Suard E, Weill F, Delmas C (2013b) Reversible oxygen participation to the redox processes revealed for Li1.20Mn0.54Co0.13Ni0.13O2. J Electrochem Soc 160:A786–A792.  https://doi.org/10.1149/2.038306jes CrossRefGoogle Scholar
  74. Kong J-Z, Wang C-L, Qian X, Tai G-A, Li A-D, Wu D, Li H, Zhou F, Yu C, Sun Y, Jia D, Tang W-P (2015) Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 by surface modification with graphene-like lithium-active MoS2. Electrochim Acta 174:542–550.  https://doi.org/10.1016/j.electacta.2015.05.185 CrossRefGoogle Scholar
  75. Kong J-Z, Xu L-P, Wang C-L, Jiang Y-X, Cao Y-Q, Zhou F (2017a) Facile coating of conductive poly(vinylidene fluoride-trifluoroethylene) copolymer on Li1.2Mn0.54Ni0.13Co0.13O2 as a high electrochemical performance cathode for Li-ion battery. J Alloys Compd 719:401–410.  https://doi.org/10.1016/j.jallcom.2017.05.184 CrossRefGoogle Scholar
  76. Kong J-Z, Zhai H-F, Qian X, Wang M, Wang Q-Z, Li A-D, Li H, Zhou F (2017b) Improved electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material coated with ultrathin ZnO. J Alloys Compd 694:848–856.  https://doi.org/10.1016/j.jallcom.2016.10.045 CrossRefGoogle Scholar
  77. Kumakhov MA, Kumakhov MA, Hoover RB (2005) The new device for imaging—Volumescope. 59430-59433.  https://doi.org/10.1117/12.637978
  78. Kumar A, Nazzario R, Torres-Castro L, Pena-Duarte A, Tomar MS (2015) Electrochemical properties of MgO-coated 0.5Li2MnO3-0.5LiNi0.5Mn0.5O2 composite cathode material for lithium ion battery. Int J Hydrogen Energy 40:4931–4935.  https://doi.org/10.1016/j.ijhydene.2015.01.104 CrossRefGoogle Scholar
  79. Lee J, Choi W (2015) Surface modification of over-lithiated layered oxides with PEDOT:PSS conducting polymer in lithium-ion batteries. J Electrochem Soc 162:A743–A748.  https://doi.org/10.1149/2.0801504jes CrossRefGoogle Scholar
  80. Lee SH, Koo BK, Kim J-C, Kim KM (2008) Effect of Co3(PO4)2 coating on Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for lithium rechargeable batteries. J Power Sources 184:276–283.  https://doi.org/10.1016/j.jpowsour.2008.05.091 CrossRefGoogle Scholar
  81. Lee MJ, Lho E, Bai P, Chae S, Li J, Cho J (2017) Low-temperature carbon coating of nanosized Li1.015Al0.06Mn1.925O4 and high-density electrode for high-power Li-ion batteries. Nano Lett 17:3744–3751.  https://doi.org/10.1021/acs.nanolett.7b01076 CrossRefGoogle Scholar
  82. Li GR, Feng X, Ding Y, Ye SH, Gao XP (2012) AlF3-coated Li(Li0.17Ni0.25Mn0.58)O2 as cathode material for Li-ion batteries. Electrochim Acta 78:308–315.  https://doi.org/10.1016/j.electacta.2012.05.142 CrossRefGoogle Scholar
  83. Li L, Chang YL, Xia H, Song BH, Yang JR, Lee KS, Lu L (2014a) NH4F surface modification of Li-rich layered cathode materials. Solid State Ionics 264:36–44.  https://doi.org/10.1016/j.ssi.2014.06.012 CrossRefGoogle Scholar
  84. Li L, Lee KS, Lu L (2014b) Li-rich layer-structured cathode materials for high energy Li-ion batteries. Funct Mater Lett 07:1430002.  https://doi.org/10.1142/s1793604714300023 CrossRefGoogle Scholar
  85. Li J, Camardese J, Shunmugasundaram R, Glazier S, Lu Z, Dahn JR (2015) Synthesis and characterization of the lithium-rich core–shell cathodes with low irreversible capacity and mitigated voltage fade. Chem Mater 27:3366–3377.  https://doi.org/10.1021/acs.chemmater.5b00617 CrossRefGoogle Scholar
  86. Li C-D, Xu J, Xia J-S, Liu W, Xiong X, Zheng Z-A (2016a) Influences of FeF3 coating layer on the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium-ion batteries. Solid State Ionics 292:75–82.  https://doi.org/10.1016/j.ssi.2016.04.024 CrossRefGoogle Scholar
  87. Li J, Li J, Yu T, Ding F, Xu G, Li Z, Zhao Y, Kang F (2016b) Stabilizing the structure and suppressing the voltage decay of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 cathode materials for Li-ion batteries via multifunctional Pr oxide surface modification. Ceram Int 42:18620–18630.  https://doi.org/10.1016/j.ceramint.2016.08.206 CrossRefGoogle Scholar
  88. Liu J, Reeja-Jayan B, Manthiram A (2010a) Conductive surface modification with aluminum of high capacity layered Li [Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes. J Phys Chem 114:9528–9533Google Scholar
  89. Liu J, Wang Q, Reeja-Jayan B, Manthiram A (2010b) Carbon-coated high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes. Electrochem Commun 12:750–753.  https://doi.org/10.1016/j.elecom.2010.03.024 CrossRefGoogle Scholar
  90. Liu B, Zhang Q, He S, Sato Y, Zheng J, Li D (2011) Improved electrochemical properties of Li1.2Ni0.18Mn0.59Co0.03O2 by surface modification with LiCoPO4. Electrochim Acta 56:6748–6751.  https://doi.org/10.1016/j.electacta.2011.05.071 CrossRefGoogle Scholar
  91. Liu X, Liu J, Huang T, Yu A (2013) CaF2-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries. Electrochim Acta 109:52–58.  https://doi.org/10.1016/j.electacta.2013.07.069 CrossRefGoogle Scholar
  92. Liu H, Du C, Yin G, Song B, Zuo P, Cheng X, Ma Y, Gao Y (2014) An Li-rich oxide cathode material with mosaic spinel grain and a surface coating for high performance Li-ion batteries. J Mater Chem A 2:15640.  https://doi.org/10.1039/c4ta02947j CrossRefGoogle Scholar
  93. Liu H, Chen C, Du C, He X, Yin G, Song B, Zuo P, Cheng X, Ma Y, Gao Y (2015a) Lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 oxide coated by Li3PO4 and carbon nanocomposite layers as high performance cathode materials for lithium ion batteries. J Mater Chem A 3:2634–2641.  https://doi.org/10.1039/c4ta04823g CrossRefGoogle Scholar
  94. Liu W, Oh P, Liu X, Myeong S, Cho W, Cho J (2015b) Countering voltage decay and capacity fading of lithium-rich cathode material at 60 °C by hybrid surface protection layers. Adv Energy Mater 5:1500274.  https://doi.org/10.1002/aenm.201500274 CrossRefGoogle Scholar
  95. Liu X, Huang T, Yu A (2015c) Surface phase transformation and CaF2 coating for enhanced electrochemical performance of Li-rich Mn-based cathodes. Electrochim Acta 163:82–92.  https://doi.org/10.1016/j.electacta.2015.02.155 CrossRefGoogle Scholar
  96. Liu Y, Wang Q, Lu Y, Yang B, Su M, Gao Y, Dou A, Pan J (2015d) Enhanced electrochemical performances of layered cathode material Li1.5Ni0.25Mn0.75O2.5 by coating with LiAlO2. J Alloys Compd 638:1–6.  https://doi.org/10.1016/j.jallcom.2015.02.059 CrossRefGoogle Scholar
  97. Liu J, Wang S, Ding Z, Zhou R, Xia Q, Zhang J, Chen L, Wei W, Wang P (2016a) The effect of boron doping on structure and electrochemical performance of lithium-rich layered oxide materials. ACS Appl Mater Interfaces 8:18008–18017.  https://doi.org/10.1021/acsami.6b03056 CrossRefGoogle Scholar
  98. Liu Y, Zhang Z, Fu Y, Wang Q, Pan J, Su M, Battaglia VS (2016b) Investigation the electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathode material with ZnAl2O4 coating for lithium ion batteries. J Alloys Compd 685:523–532.  https://doi.org/10.1016/j.jallcom.2016.05.329 CrossRefGoogle Scholar
  99. Lu Z, Beaulieu LY, Donaberger RA, Thomas CL, Dahn JR (2002) Synthesis, structure, and electrochemical behavior of Li[NixLi1/3−2x/3Mn2/3−x/3]O2. J Electrochem Soc 149:A778.  https://doi.org/10.1149/1.1471541 CrossRefGoogle Scholar
  100. Lu C, Wu H, Zhang Y, Liu H, Chen B, Wu N, Wang S (2014) Cerium fluoride coated layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials with improved electrochemical performance for lithium ion batteries. J Power Sources 267:682–691.  https://doi.org/10.1016/j.jpowsour.2014.05.122 CrossRefGoogle Scholar
  101. Lu P, Yan P, Romero E, Spoerke ED, Zhang J-G, Wang C-M (2015) Observation of electron-beam-induced phase evolution mimicking the effect of the charge–discharge cycle in Li-rich layered cathode materials used for Li ion batteries. Chem Mater 27:1375–1380.  https://doi.org/10.1021/cm5045573 CrossRefGoogle Scholar
  102. Ma J, Li B, An L, Wei H, Wang X, Yu P, Xia D (2015) A highly homogeneous nanocoating strategy for Li-rich Mn-based layered oxides based on chemical conversion. J Power Sources 277:393–402.  https://doi.org/10.1016/j.jpowsour.2014.11.133 CrossRefGoogle Scholar
  103. Ma D, Li Y, Wu M, Deng L, Ren X, Zhang P (2016a) Enhanced cycling stability of Li-rich nanotube cathodes by 3D graphene hierarchical architectures for Li-ion batteries. Acta Mater 112:11–19.  https://doi.org/10.1016/j.actamat.2016.04.010 CrossRefGoogle Scholar
  104. Ma Q, Li R, Zheng R, Liu Y, Huo H, Dai C (2016b) Improving rate capability and decelerating voltage decay of Li-rich layered oxide cathodes via selenium doping to stabilize oxygen. J Power Sources 331:112–121.  https://doi.org/10.1016/j.jpowsour.2016.08.137 CrossRefGoogle Scholar
  105. Martha SK, Nanda J, Veith GM, Dudney NJ (2012) Surface studies of high voltage lithium rich composition: Li1.2Mn0.525Ni0.175Co0.1O2. J Power Sources 216:179–186.  https://doi.org/10.1016/j.jpowsour.2012.05.049 CrossRefGoogle Scholar
  106. Martha SK, Nanda J, Kim Y, Unocic RR, Pannala S, Dudney NJ (2013) Solid electrolyte coated high voltage layered–layered lithium-rich composite cathode: Li1.2Mn0.525Ni0.175Co0.1O2. J Mater Chem A 1:5587.  https://doi.org/10.1039/c3ta10586e
  107. Meng H, Li L, Liu J, Han X, Zhang W, Liu X, Xu Q (2017) Surface modification of Li-rich layered Li[Li0.17Ni0.17Co0.10Mn0.56]O2 oxide with LiV3O8 as a cathode material for Li-ion batteries. J Alloys Compd 690:256–266.  https://doi.org/10.1016/j.jallcom.2016.08.089 CrossRefGoogle Scholar
  108. Mizushima K, Jones P, Wiseman P, Goodenough JB (1980) LixCoO2 (0 < x ≤ 1): a new cathode material for batteries of high energy density. Mater Res Bull 15:783–789CrossRefGoogle Scholar
  109. Mohanty D, Kalnaus S, Meisner RA, Rhodes KJ, Li J, Payzant EA, Wood DL, Daniel C (2013a) Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. J Power Sources 229:239–248.  https://doi.org/10.1016/j.jpowsour.2012.11.144 CrossRefGoogle Scholar
  110. Mohanty D, Sefat AS, Kalnaus S, Li J, Meisner RA, Payzant EA, Abraham DP, Wood DL, Daniel C (2013b) Investigating phase transformation in the Li1.2Co0.1Mn0.55Ni0.15O2 lithium-ion battery cathode during high-voltage hold (4.5 V) via magnetic, X-ray diffraction and electron microscopy studies. J Mater Chem A 1:6249. doi: https://doi.org/10.1039/c3ta10304h
  111. Muhammad S, Kim H, Kim Y, Kim D, Song JH, Yoon J, Park J-H, Ahn S-J, Kang S-H, Thackeray MM, Yoon W-S (2016) Evidence of reversible oxygen participation in anomalously high capacity Li- and Mn-rich cathodes for Li-ion batteries. Nano Energy 21:172–184.  https://doi.org/10.1016/j.nanoen.2015.12.027 CrossRefGoogle Scholar
  112. Mun J, Park J-H, Choi W, Benayad A, Park J-H, Lee J-M, Doo S-G, Oh SM (2014) New dry carbon nanotube coating of over-lithiated layered oxide cathode for lithium ion batteries. J Mater Chem A 2:19670–19677.  https://doi.org/10.1039/c4ta04818k CrossRefGoogle Scholar
  113. Oh P, Ko M, Myeong S, Kim Y, Cho J (2014) A novel surface treatment method and new insight into discharge voltage deterioration for high-performance 0.4Li2MnO3-0.6LiNi1/3Co1/3Mn1/3O2 cathode materials. Adv Energy Mater 4:1400631.  https://doi.org/10.1002/aenm.201400631 CrossRefGoogle Scholar
  114. Ohzuku T, Nagayama M, Tsuji K, Ariyoshi K (2011) High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: toward rechargeable capacity more than 300 mA h g−1. J Mater Chem 21:10179.  https://doi.org/10.1039/c0jm04325g CrossRefGoogle Scholar
  115. Oishi M, Yogi C, Watanabe I, Ohta T, Orikasa Y, Uchimoto Y, Ogumi Z (2015) Direct observation of reversible charge compensation by oxygen ion in Li-rich manganese layered oxide positive electrode material, Li1.16Ni0.15Co0.19Mn0.50O2. J Power Sources 276:89–94.  https://doi.org/10.1016/j.jpowsour.2014.11.104 CrossRefGoogle Scholar
  116. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194CrossRefGoogle Scholar
  117. Pan C, Lee YJ, Ammundsen B, Grey CP (2002) 6Li MAS NMR studies of the local structure and electrochemical properties of Cr-doped lithium manganese and lithium cobalt oxide cathode materials for lithium-ion batteries. Chem Mater 14:2289–2299CrossRefGoogle Scholar
  118. Pang S, Wang Y, Chen T, Shen X, Xi X, Liao D (2016) The effect of AlF3 modification on the physicochemical and electrochemical properties of Li-rich layered oxide. Ceram Int 42:5397–5402.  https://doi.org/10.1016/j.ceramint.2015.12.076 CrossRefGoogle Scholar
  119. Park M-S, Lee J-W, Choi W, Im D, Doo S-G, Park K-S (2010) On the surface modifications of high-voltage oxide cathodes for lithium-ion batteries: new insight and significant safety improvement. J Mater Chem 20:7208–7213CrossRefGoogle Scholar
  120. Paulsen J, Thomas C, Dahn J (2000) O2 Structure Li2/3[Ni1/3Mn2/3]O2: a new layered cathode material for rechargeable lithium batteries I. Electrochemical properties. J Electrochem Soc 147:861–868CrossRefGoogle Scholar
  121. Pham HQ, Kim G, Jung HM, Song S-W (2018) Fluorinated polyimide as a novel high-voltage binder for high-capacity cathode of lithium-ion batteries. Adv Funct Mater 28:1704690.  https://doi.org/10.1002/adfm.201704690 CrossRefGoogle Scholar
  122. Prakasha KR, Sathish M, Bera P, Prakash AS (2017) Mitigating the surface degradation and voltage decay of Li1.2Ni0.13Mn0.54Co0.13O2 cathode material through surface modification using Li2ZrO3. ACS Omega 2:2308–2316.  https://doi.org/10.1021/acsomega.7b00381 CrossRefGoogle Scholar
  123. Qiao QQ, Zhang HZ, Li GR, Ye SH, Wang CW, Gao XP (2013) Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with Li–Mn–PO4 as the cathode for lithium-ion batteries. J Mater Chem A 1:5262.  https://doi.org/10.1039/c3ta00028a CrossRefGoogle Scholar
  124. Qiao Q-Q, Qin L, Li G-R, Wang Y-L, Gao X-P (2015) Sn-stabilized Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide as a cathode for advanced lithium-ion batteries. J Mater Chem A 3:17627–17634.  https://doi.org/10.1039/c5ta03415a CrossRefGoogle Scholar
  125. Qiao Q-Q, Li G-R, Wang Y-L, Gao X-P (2016) To enhance the capacity of Li-rich layered oxides by surface modification with metal–organic frameworks (MOFs) as cathodes for advanced lithium-ion batteries. J Mater Chem A 4:4440–4447.  https://doi.org/10.1039/c6ta00882h CrossRefGoogle Scholar
  126. Qing R-P, Shi J-L, Xiao D-D, Zhang X-D, Yin Y-X, Zhai Y-B, Gu L, Guo Y-G (2016) Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping. Adv Energy Mater 6:1501914.  https://doi.org/10.1002/aenm.201501914 CrossRefGoogle Scholar
  127. Qiu B, Wang J, Xia Y, Wei Z, Han S, Liu Z (2014) Enhanced electrochemical performance with surface coating by reactive magnetron sputtering on lithium-rich layered oxide electrodes. ACS Appl Mater Interfaces 6:9185–9193CrossRefGoogle Scholar
  128. Qiu B, Zhang M, Wu L, Wang J, Xia Y, Qian D, Liu H, Hy S, Chen Y, An K, Zhu Y, Liu Z, Meng YS (2016) Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat Commun 7:12108.  https://doi.org/10.1038/ncomms12108 CrossRefGoogle Scholar
  129. Rana J, Kloepsch R, Li J, Stan M, Schumacher G, Winter M, Banhart J (2016) Structural changes in a Li-rich 0.5Li2MnO3∙0.5LiMn0.4Ni0.4Co0.2O2 cathode material for Li-ion batteries: a local perspective. J Electrochem Soc 163:A811–A820.  https://doi.org/10.1149/2.0211606jes CrossRefGoogle Scholar
  130. Rosina KJ, Jiang M, Zeng D, Salager E, Best AS, Grey CP (2012) Structure of aluminum fluoride coated Li[Li1/9Ni1/3Mn5/9]O2 cathodes for secondary lithium-ion batteries. J Mater Chem 22:20602.  https://doi.org/10.1039/c2jm34114j CrossRefGoogle Scholar
  131. Rozier P, Tarascon JM (2015) Review—Li-rich layered oxide cathodes for next-generation Li-ion batteries: chances and challenges. J Electrochem Soc 162:A2490–A2499.  https://doi.org/10.1149/2.0111514jes CrossRefGoogle Scholar
  132. Sathiya M, Ramesha K, Rousse G, Foix D, Gonbeau D, Prakash AS, Doublet ML, Hemalatha K, Tarascon JM (2013) High performance Li2Ru1–yMnyO3 (0.2 ≤ y ≤ 0.8) cathode materials for rechargeable lithium-ion batteries: their understanding. Chem Mater 25:1121–1131.  https://doi.org/10.1021/cm400193m CrossRefGoogle Scholar
  133. Seok Jung Y, Cavanagh AS, Yan Y, George SM, Manthiram A (2011) Effects of atomic layer deposition of Al2O3 on the Li[Li0.20Mn0.54Ni0.13Co0.13]O2 cathode for lithium-ion batteries. J Electrochem Soc 158(12):A1298.  https://doi.org/10.1149/2.030112jes CrossRefGoogle Scholar
  134. Seteni B, Rapulenyane N, Ngila JC, Mpelane S, Luo H (2017) Coating effect of LiFePO4 and Al2O3 on Li1.2Mn0.54Ni0.13Co0.13O2 cathode surface for lithium ion batteries. J Power Sources 353:210–220.  https://doi.org/10.1016/j.jpowsour.2017.04.008 CrossRefGoogle Scholar
  135. Shen C-H, Shen S-Y, Fu F, Shi C-G, Zhang H-Y, Pierre MJ, Su H, Wang Q, Xu B-B, Huang L, Li J-T, Sun S-G (2015) New insight into structural transformation in Li-rich layered oxide during the initial charging. J Mater Chem A 3:12220–12229.  https://doi.org/10.1039/c5ta01849h CrossRefGoogle Scholar
  136. Shi SJ, Tu JP, Mai YJ, Zhang YQ, Gu CD, Wang XL (2012) Effect of carbon coating on electrochemical performance of Li1.048Mn0.381Ni0.286Co0.286O2 cathode material for lithium-ion batteries. Electrochim Acta 63:112–117.  https://doi.org/10.1016/j.electacta.2011.12.082 CrossRefGoogle Scholar
  137. Shi SJ, Tu JP, Tang YY, Liu XY, Zhang YQ, Wang XL, Gu CD (2013a) Enhanced cycling stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method. Electrochim Acta 88:671–679.  https://doi.org/10.1016/j.electacta.2012.10.111 CrossRefGoogle Scholar
  138. Shi SJ, Tu JP, Zhang YJ, Zhang YD, Zhao XY, Wang XL, Gu CD (2013b) Effect of Sm2O3 modification on Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode material for lithium ion batteries. Electrochim Acta 108:441–448.  https://doi.org/10.1016/j.electacta.2013.07.020 CrossRefGoogle Scholar
  139. Singh G, Thomas R, Kumar A, Katiyar RS, Manivannan A (2012) Electrochemical and structural investigations on ZnO treated 0.5Li2MnO3-0.5LiMn0.5Ni0.5O2 layered composite cathode material for lithium ion battery. J Electrochem Soc 159:A470.  https://doi.org/10.1149/2.100204jes CrossRefGoogle Scholar
  140. Song B, Liu Z, Lai MO, Lu L (2012) Structural evolution and the capacity fade mechanism upon long-term cycling in Li-rich cathode material. Phys Chem Chem Phys 14:12875–12883.  https://doi.org/10.1039/c2cp42068f CrossRefGoogle Scholar
  141. Song B, Lai MO, Liu Z, Liu H, Lu L (2013a) Graphene-based surface modification on layered Li-rich cathode for high-performance Li-ion batteries. J Mater Chem A 1:9954.  https://doi.org/10.1039/c3ta11580a CrossRefGoogle Scholar
  142. Song B, Liu H, Liu Z, Xiao P, Lai MO, Lu L (2013b) High rate capability caused by surface cubic spinels in Li-rich layer-structured cathodes for Li-ion batteries. Sci Rep-UK 3:3094.  https://doi.org/10.1038/srep03094 CrossRefGoogle Scholar
  143. Song B, Zhou C, Chen Y, Liu Z, Lai MO, Xue J, Lu L (2014) Role of carbon coating in improving electrochemical performance of Li-rich Li(Li0.2Mn0.54Ni0.13Co0.13)O2 cathode. RSC Adv 4:44244–44252.  https://doi.org/10.1039/c4ra04976d CrossRefGoogle Scholar
  144. Song JH, Kapylou A, Choi HS, Yu BY, Matulevich E, Kang SH (2016) Suppression of irreversible capacity loss in Li-rich layered oxide by fluorine doping. J Power Sources 313:65–72.  https://doi.org/10.1016/j.jpowsour.2016.02.058 CrossRefGoogle Scholar
  145. Strehle B, Kleiner K, Jung R, Chesneau F, Mendez M, Gasteiger HA, Piana M (2017) The role of oxygen release from Li- and Mn-rich layered oxides during the first cycles investigated by on-line electrochemical mass spectrometry. J Electrochem Soc 164:A400–A406.  https://doi.org/10.1149/2.1001702jes CrossRefGoogle Scholar
  146. Sun YK, Lee MJ, Yoon CS, Hassoun J, Amine K, Scrosati B (2012) The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv Mater 24:1192–1196.  https://doi.org/10.1002/adma.201104106 CrossRefGoogle Scholar
  147. Sun S, Wan N, Wu Q, Zhang X, Pan D, Bai Y, Lu X (2015a) Surface-modified Li[Li0.2Ni0.17Co0.07Mn0.56]O2 nanoparticles with MgF2 as cathode for Li-ion battery. Solid State Ionics 278:85–90.  https://doi.org/10.1016/j.ssi.2015.05.021 CrossRefGoogle Scholar
  148. Sun S, Yin Y, Wan N, Wu Q, Zhang X, Pan D, Bai Y, Lu X (2015b) AlF3 surface-coated Li[Li0.2Ni0.17Co0.07Mn0.56]O2 nanoparticles with superior electrochemical performance for lithium-ion batteries. ChemSusChem 8:2544–2550.  https://doi.org/10.1002/cssc.201500143 CrossRefGoogle Scholar
  149. Sun YY, Li F, Qiao QQ, Cao JS, Wang YL, Ye SH (2015c) Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with LiAlSiO4 fast ion conductor as cathode material for Li-ion batteries. Electrochim Acta 176:1464–1475.  https://doi.org/10.1016/j.electacta.2015.07.085 CrossRefGoogle Scholar
  150. Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRefGoogle Scholar
  151. Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Hackney SA (2006) Comments on the structural complexity of lithium-rich Li1+xM1−xO2 electrodes (M = Mn, Ni, Co) for lithium batteries. Electrochem Commun 8:1531–1538.  https://doi.org/10.1016/j.elecom.2006.06.030 CrossRefGoogle Scholar
  152. Thackeray MM, Kang S-H, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem 17:3112.  https://doi.org/10.1039/b702425h CrossRefGoogle Scholar
  153. Thackeray MM, Wolverton C, Isaacs ED (2012) Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci 5:7854.  https://doi.org/10.1039/c2ee21892e CrossRefGoogle Scholar
  154. Uzun D, Doğrusöz M, Mazman M, Biçer E, Avci E, Şener T, Kaypmaz TC, Demir-Cakan R (2013) Effect of MnO2 coating on layered Li(Li0.1Ni0.3Mn0.5Fe0.1)O2 cathode material for Li-ion batteries. Solid State Ionics 249-250:171–176.  https://doi.org/10.1016/j.ssi.2013.08.012 CrossRefGoogle Scholar
  155. Wang QY, Liu J, Murugan AV, Manthiram A (2009) High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode with improved rate capability. J Mater Chem 19:4965.  https://doi.org/10.1039/b823506f CrossRefGoogle Scholar
  156. Wang D, Huang Y, Huo Z, Chen L (2013a) Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material. Electrochim Acta 107:461–466.  https://doi.org/10.1016/j.electacta.2013.05.145 CrossRefGoogle Scholar
  157. Wang Z, Liu E, Guo L, Shi C, He C, Li J, Zhao N (2013b) Cycle performance improvement of Li-rich layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by ZrO2 coating. Surf Coat Technol 235:570–576.  https://doi.org/10.1016/j.surfcoat.2013.08.026 CrossRefGoogle Scholar
  158. Wang Z, Liu E, He C, Shi C, Li J, Zhao N (2013c) Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries. J Power Sources 236:25–32.  https://doi.org/10.1016/j.jpowsour.2013.02.022 CrossRefGoogle Scholar
  159. Wang C, Zhou F, Chen K, Kong J, Jiang Y, Yan G, Li J, Yu C, Tang W-P (2015a) Electrochemical properties of α-MoO3-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries. Electrochim Acta 176:1171–1181.  https://doi.org/10.1016/j.electacta.2015.07.167 CrossRefGoogle Scholar
  160. Wang D, Wang X, Yang X, Yu R, Ge L, Shu H (2015b) Polyaniline modification and performance enhancement of lithium-rich cathode material based on layered-spinel hybrid structure. J Power Sources 293:89–94.  https://doi.org/10.1016/j.jpowsour.2015.05.058 CrossRefGoogle Scholar
  161. Wang Z, Luo S, Ren J, Wang D, Qi X (2016) Enhanced electrochemical performance of Li-rich cathode Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification with lithium ion conductor Li3PO4. Appl Surf Sci 370:437–444.  https://doi.org/10.1016/j.apsusc.2016.02.139 CrossRefGoogle Scholar
  162. Wang Z, Yin Y, Ren Y, Wang Z, Gao M, Ma T, Zhuang W, Lu S, Fan A, Amine K, Chen Z (2017) High performance lithium–manganese-rich cathode material with reduced impurities. Nano Energy 31:247–257.  https://doi.org/10.1016/j.nanoen.2016.10.014 CrossRefGoogle Scholar
  163. Wei W, Chen L, Pan A, Ivey DG (2016) Roles of surface structure and chemistry on electrochemical processes in lithium-rich layered oxide cathodes. Nano Energy 30:580–602.  https://doi.org/10.1016/j.nanoen.2016.10.066 CrossRefGoogle Scholar
  164. Wen JG, Bareño J, Lei CH, Kang SH, Balasubramanian M, Petrov I, Abraham DP (2011) Analytical electron microscopy of Li1.2Co0.4Mn0.4O2 for lithium-ion batteries. Solid State Ionics 182:98–107.  https://doi.org/10.1016/j.ssi.2010.11.030 CrossRefGoogle Scholar
  165. Wu Y, Manthiram A (2006) High capacity, surface-modified layered Li[Li(1−x)∕3Mn(2−x)∕3Nix∕3Cox∕3]O2 cathodes with low irreversible capacity loss. Electrochem Solid-State Lett 9:A221.  https://doi.org/10.1149/1.2180528 CrossRefGoogle Scholar
  166. Wu Y, Manthiram A (2009) Effect of surface modifications on the layered solid solution cathodes (1−z)Li[Li1/3Mn2/3]O2−(z)Li[Mn0.5−yNi0.5−yCo2y]O2. Solid State Ionics 180:50–56.  https://doi.org/10.1016/j.ssi.2008.11.002 CrossRefGoogle Scholar
  167. Wu F, Li N, Su Y, Lu H, Zhang L, An R, Wang Z, Bao L, Chen S (2012) Can surface modification be more effective to enhance the electrochemical performance of lithium rich materials? J Mater Chem 22:1489–1497.  https://doi.org/10.1039/c1jm14459f CrossRefGoogle Scholar
  168. Wu C, Fang X, Guo X, Mao Y, Ma J, Zhao C, Wang Z, Chen L (2013a) Surface modification of Li1.2Mn0.54Co0.13Ni0.13O2 with conducting polypyrrole. J Power Sources 231:44–49.  https://doi.org/10.1016/j.jpowsour.2012.11.138 CrossRefGoogle Scholar
  169. Wu F, Li N, Su Y, Shou H, Bao L, Yang W, Zhang L, An R, Chen S (2013b) Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries. Adv Mater 25:3722–3726.  https://doi.org/10.1002/adma.201300598 CrossRefGoogle Scholar
  170. Wu Y, Ming J, Zhuo L, Yu Y, Zhao F (2013c) Simultaneous surface coating and chemical activation of the Li-rich solid solution lithium rechargeable cathode and its improved performance. Electrochim Acta 113:54–62.  https://doi.org/10.1016/j.electacta.2013.09.042 CrossRefGoogle Scholar
  171. Wu F, Li N, Su Y, Zhang L, Bao L, Wang J, Chen L, Zheng Y, Dai L, Peng J, Chen S (2014a) Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries. Nano Lett 14:3550–3555.  https://doi.org/10.1021/nl501164y CrossRefGoogle Scholar
  172. Wu F, Wang Z, Su Y, Yan N, Bao L, Chen S (2014b) Li[Li0.2Mn0.54Ni0.13Co0.13]O2–MoO3 composite cathodes with low irreversible capacity loss for lithium ion batteries. J Power Sources 247:20–25.  https://doi.org/10.1016/j.jpowsour.2013.08.031 CrossRefGoogle Scholar
  173. Wu F, Zhang X, Zhao T, Li L, Xie M, Chen R (2015) Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries. ACS Appl Mater Interfaces7:3773-3781. doi: https://doi.org/10.1021/am508579r
  174. Xia Q, Zhao X, Xu M, Ding Z, Liu J, Chen L, Ivey DG, Wei W (2015) A Li-rich layered@spinel@carbon heterostructured cathode material for high capacity and high rate lithium-ion batteries fabricated via an in situ synchronous carbonization-reduction method. J Mater Chem A 3:3995–4003.  https://doi.org/10.1039/c4ta05848h CrossRefGoogle Scholar
  175. Xiao B, Wang B, Liu J, Kaliyappan K, Sun Q, Liu Y, Dadheech G, Balogh MP, Yang L, Sham T-K, Li R, Cai M, Sun X (2017) Highly stable Li1.2Mn0.54Co0.13Ni0.13O2 enabled by novel atomic layer deposited AlPO4 coating. Nano Energy 34:120–130.  https://doi.org/10.1016/j.nanoen.2017.02.015 CrossRefGoogle Scholar
  176. Xu B, Fell CR, Chi M, Meng YS (2011) Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: a joint experimental and theoretical study. Energy Environ Sci 4:2223.  https://doi.org/10.1039/c1ee01131f CrossRefGoogle Scholar
  177. Xu G, Li J, Xue Q, Dai Y, Zhou H, Wang X, Kang F (2014) Elevated electrochemical performance of (NH4)3AlF6-coated 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 cathode material via a novel wet coating method. Electrochim Acta 117:41–47.  https://doi.org/10.1016/j.electacta.2013.11.064 CrossRefGoogle Scholar
  178. Xu M, Chen Z, Zhu H, Yan X, Li L, Zhao Q (2015) Mitigating capacity fade by constructing highly ordered mesoporous Al2O3/polyacene double-shelled architecture in Li-rich cathode materials. J Mater Chem A 3:13933–13945.  https://doi.org/10.1039/c5ta03676c CrossRefGoogle Scholar
  179. Xu M, Fei L, Zhang W, Li T, Lu W, Zhang N, Lai Y, Zhang Z, Fang J, Zhang K, Li J, Huang H (2017) Tailoring anisotropic Li-ion transport tunnels on orthogonally arranged Li-rich layered oxide nanoplates toward high-performance Li-ion batteries. Nano Lett 17:1670–1677.  https://doi.org/10.1021/acs.nanolett.6b04951 CrossRefGoogle Scholar
  180. Xue Q, Li J, Xu G, Zhou H, Wang X, Kang F (2014) In situ polyaniline modified cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with high rate capacity for lithium ion batteries. J Mater Chem A 2:18613–18623.  https://doi.org/10.1039/c4ta04024d CrossRefGoogle Scholar
  181. Yabuuchi N, Yoshii K, Myung ST, Nakai I, Komaba S (2011) Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2. J Am Chem Soc 133:4404–4419.  https://doi.org/10.1021/ja108588y CrossRefGoogle Scholar
  182. Yan J, Liu X, Li B (2014) Recent progress in li-rich layered oxides as cathode materials for Li-ion batteries. RSC Adv 4:63268–63284.  https://doi.org/10.1039/c4ra12454e CrossRefGoogle Scholar
  183. Yan P, Zheng J, Zhang X, Xu R, Amine K, Xiao J, Zhang J-G, Wang C-M (2016) Atomic to nanoscale investigation of functionalities of an Al2O3 coating layer on a cathode for enhanced battery performance. Chem Mater 28:857–863.  https://doi.org/10.1021/acs.chemmater.5b04301 CrossRefGoogle Scholar
  184. Yang Y, Liu X, Dai Z, Yuan F, Bando Y, Golberg D, Wang X (2017) In situ electrochemistry of rechargeable battery materials: status report and perspectives. Adv Mater 29:1606922.  https://doi.org/10.1002/adma.201606922 CrossRefGoogle Scholar
  185. Ye D, Zeng G, Nogita K, Ozawa K, Hankel M, Searles DJ, Wang L (2015) Understanding the origin of Li2MnO3 activation in Li-rich cathode materials for lithium-ion batteries. Adv Funct Mater 25:7488–7496.  https://doi.org/10.1002/adfm.201503276 CrossRefGoogle Scholar
  186. Yu DYW, Yanagida K, Nakamura H (2010) Surface modification of Li-excess Mn-based cathode materials. J Electrochem Soc 157:A1177.  https://doi.org/10.1149/1.3479382 CrossRefGoogle Scholar
  187. Yu H, Kim H, Wang Y, He P, Asakura D, Nakamura Y, Zhou H (2012) High-energy ‘composite’ layered manganese-rich cathode materials via controlling Li2MnO3 phase activation for lithium-ion batteries. Phys Chem Chem Phys 14:6584–6595.  https://doi.org/10.1039/c2cp40745k CrossRefGoogle Scholar
  188. Yu H, Ishikawa R, So YG, Shibata N, Kudo T, Zhou H, Ikuhara Y (2013a) Direct atomic-resolution observation of two phases in the Li1.2Mn0.567Ni0.166Co0.067O2 cathode material for lithium-ion batteries. Angew Chem Int Ed 52:5969–5973.  https://doi.org/10.1002/anie.201301236 CrossRefGoogle Scholar
  189. Yu S-H, Yoon T, Mun J, Park S, Kang Y-S, Park J-H, Oh SM, Sung Y-E (2013b) Continuous activation of Li2MnO3 component upon cycling in Li1.167Ni0.233Co0.100Mn0.467Mo0.033O2 cathode material for lithium ion batteries. J Mater Chem A 1:2833.  https://doi.org/10.1039/c2ta00309k CrossRefGoogle Scholar
  190. Yu R, Zhang X, Liu T, Yang L, Liu L, Wang Y, Wang X, Shu H, Yang X (2017) Spinel/layered heterostructured lithium-rich oxide nanowires as cathode material for high-energy lithium-ion batteries. ACS Appl Mater Interfaces 9:41210–41223.  https://doi.org/10.1021/acsami.7b11942 CrossRefGoogle Scholar
  191. Yuan W, Zhang HZ, Liu Q, Li GR, Gao XP (2014) Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with CeO2 as cathode material for Li-ion batteries. Electrochim Acta 135:199–207.  https://doi.org/10.1016/j.electacta.2014.04.181 CrossRefGoogle Scholar
  192. Zang Y, Ding C-X, Wang X-C, Wen Z-Y, Chen C-H (2015) Molybdenum-doped lithium-rich layered-structured cathode material Li1.2Ni0.2Mn0.6O2 with high specific capacity and improved rate performance. Electrochim Acta 168:234–239.  https://doi.org/10.1016/j.electacta.2015.03.223 CrossRefGoogle Scholar
  193. Zeng K, Li T, Tian T (2017) In situ study of li-ions diffusion and deformation in li-rich cathode materials by using scanning probe microscopy techniques. J Phys D: Appl Phys 50:313001.  https://doi.org/10.1088/1361-6463/aa7571 CrossRefGoogle Scholar
  194. Zhang HZ, Qiao QQ, Li GR, Ye SH, Gao XP (2012) Surface nitridation of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide as cathode material for lithium-ion battery. J Mater Chem 22:13104.  https://doi.org/10.1039/c2jm30989k CrossRefGoogle Scholar
  195. Zhang X, Belharouak I, Li L, Lei Y, Elam JW, Nie A, Chen X, Yassar RS, Axelbaum RL (2013) Structural and electrochemical study of Al2O3 and TiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD. Adv Energy Mater 3:1299–1307.  https://doi.org/10.1002/aenm.201300269 CrossRefGoogle Scholar
  196. Zhang J, Lu Q, Fang J, Wang J, Yang J, NuLi Y (2014) Polyimide encapsulated lithium-rich cathode material for high voltage lithium-ion battery. ACS Appl Mater Interfaces 6:17965–17973.  https://doi.org/10.1021/am504796n CrossRefGoogle Scholar
  197. Zhang J, Lei Z, Wang J, NuLi Y, Yang J (2015a) Surface modification of Li1.2Ni0.13Mn0.54Co0.13O2 by hydrazine vapor as aathode material for lithium-ion batteries. ACS Appl Mater Interfaces 7:15821–15829.  https://doi.org/10.1021/acsami.5b02937 CrossRefGoogle Scholar
  198. Zhang X, Sun S, Wu Q, Wan N, Pan D, Bai Y (2015b) Improved electrochemical and thermal performances of layered Li[Li0.2Ni0.17Co0.07Mn0.56]O2 via Li2ZrO3 surface modification. J Power Sources 282:378–384.  https://doi.org/10.1016/j.jpowsour.2015.02.081 CrossRefGoogle Scholar
  199. Zhang J, Zhang H, Gao R, Li Z, Hu Z, Liu X (2016a) New insights into the modification mechanism of Li-rich Li1.2Mn0.6Ni0.2O2 coated by Li2ZrO3. Phys Chem Chem Phys 18:13322–13331.  https://doi.org/10.1039/c6cp01366j CrossRefGoogle Scholar
  200. Zhang LL, Chen JJ, Cheng S, Xiang HF (2016b) Enhanced electrochemical performances of Li1.2Ni0.2Mn0.6O2 cathode materials by coating LiAlO2 for lithium-ion batteries. Ceram Int 42:1870–1878.  https://doi.org/10.1016/j.ceramint.2015.09.154 CrossRefGoogle Scholar
  201. Zhang X, Yin Y, Hu Y, Wu Q, Bai Y (2016c) Zr-containing phosphate coating to enhance the electrochemical performances of Li-rich layer-structured Li[Li0.2Ni0.17Co0.07Mn0.56]O2. Electrochim Acta 193:96–103.  https://doi.org/10.1016/j.electacta.2016.02.065 CrossRefGoogle Scholar
  202. Zhang S, Gu H, Pan H, Yang S, Du W, Li X, Gao M, Liu Y, Zhu M, Ouyang L, Jian D, Pan F (2017) A novel strategy to suppress capacity and voltage fading of Li- and Mn-rich layered oxide cathode material for lithium-ion batteries. Adv Energy Mater 7:1601066.  https://doi.org/10.1002/aenm.201601066 CrossRefGoogle Scholar
  203. Zhao Y, Zhao C, Feng H, Sun Z, Xia D (2011) Enhanced electrochemical performance of Li[Li0.2Ni0.2Mn0.6]O2 modified by manganese oxide coating for lithium-ion batteries. Electrochem Solid-State Lett 14:A1.  https://doi.org/10.1149/1.3496402 CrossRefGoogle Scholar
  204. Zhao Y, Wang S, Ren W, Wu R (2012) Storage characteristics and surface basicity properties of Li-rich cathode materials used in lithium ion batteries. J Electrochem Soc 160:A82–A86.  https://doi.org/10.1149/2.065301jes CrossRefGoogle Scholar
  205. Zhao E, Liu X, Hu Z, Sun L, Xiao X (2015a) Facile synthesis and enhanced electrochemical performances of Li2TiO3-coated lithium-rich layered Li1.13Ni0.30Mn0.57O2 cathode materials for lithium-ion batteries. J Power Sources 294:141–149.  https://doi.org/10.1016/j.jpowsour.2015.06.059 CrossRefGoogle Scholar
  206. Zhao E, Liu X, Zhao H, Xiao X, Hu Z (2015b) Ion conducting Li2SiO3-coated lithium-rich layered oxide exhibiting high rate capability and low polarization. Chem Commun 51:9093–9096.  https://doi.org/10.1039/c5cc00383k CrossRefGoogle Scholar
  207. Zhao T, Li L, Chen R, Wu H, Zhang X, Chen S, Xie M, Wu F, Lu J, Amine K (2015c) Design of surface protective layer of LiF/FeF3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries. Nano Energy 15:164–176.  https://doi.org/10.1016/j.nanoen.2015.04.013 CrossRefGoogle Scholar
  208. Zhao Y, Xia M, Hu X, Zhao Z, Wang Y, Lv Z (2015d) Effects of Sn doping on the structural and electrochemical properties of Li1.2Ni0.2Mn0.8O2 Li-rich cathode materials. Electrochim Acta 174:1167–1174.  https://doi.org/10.1016/j.electacta.2015.05.068 CrossRefGoogle Scholar
  209. Zhao Y, Liu J, Wang S, Ji R, Xia Q, Ding Z, Wei W, Liu Y, Wang P, Ivey DG (2016) Surface structural transition induced by gradient polyanion-doping in Li-rich layered oxides: implications for enhanced electrochemical performance. Adv Funct Mater 26:4760–4767.  https://doi.org/10.1002/adfm.201600576 CrossRefGoogle Scholar
  210. Zhao J, Huang R, Ramos P, Yue Y, Wu Q, Pavanello M, Zhou J, Kuai X, Gao L, He H, Wang Y (2017) Structural transformation of Li-excess cathode materials via facile preparation and assembly of sonication-induced colloidal nanocrystals for enhanced lithium storage performance. ACS Appl Mater Interfaces 9:31181–31191.  https://doi.org/10.1021/acsami.7b09981 CrossRefGoogle Scholar
  211. Zheng JM, Li J, Zhang ZR, Guo XJ, Yang Y (2008a) The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium-ion battery. Solid State Ionics 179:1794–1799.  https://doi.org/10.1016/j.ssi.2008.01.091 CrossRefGoogle Scholar
  212. Zheng JM, Zhang ZR, Wu XB, Dong ZX, Zhu Z, Yang Y (2008b) The effects of AlF3 coating on the performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 positive electrode material for lithium-ion battery. J Electrochem Soc 155:A775.  https://doi.org/10.1149/1.2966694 CrossRefGoogle Scholar
  213. Zheng J, Deng S, Shi Z, Xu H, Xu H, Deng Y, Zhang Z, Chen G (2013) The effects of persulfate treatment on the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material. J Power Sources 221:108–113.  https://doi.org/10.1016/j.jpowsour.2012.06.084 CrossRefGoogle Scholar
  214. Zheng J, Gu M, Genc A, Xiao J, Xu P, Chen X, Zhu Z, Zhao W, Pullan L, Wang C, Zhang JG (2014a) Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution. Nano Lett 14:2628–2635.  https://doi.org/10.1021/nl500486y CrossRefGoogle Scholar
  215. Zheng J, Gu M, Xiao J, Polzin BJ, Yan P, Chen X, Wang C, Zhang J-G (2014b) Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials. Chem Mater 26:6320–6327.  https://doi.org/10.1021/cm502071h CrossRefGoogle Scholar
  216. Zheng F, Yang C, Xiong X, Xiong J, Hu R, Chen Y, Liu M (2015a) Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade. Angew Chem Int Ed 54:13058–13062.  https://doi.org/10.1002/anie.201506408 CrossRefGoogle Scholar
  217. Zheng J, Xu P, Gu M, Xiao J, Browning ND, Yan P, Wang C, Zhang J-G (2015b) Structural and chemical evolution of Li- and Mn-rich layered cathode material. Chem Mater 27:1381–1390.  https://doi.org/10.1021/cm5045978 CrossRefGoogle Scholar
  218. Zheng J, Myeong S, Cho W, Yan P, Xiao J, Wang C, Cho J, Zhang J-G (2017) Li- and Mn-rich cathode materials: challenges to commercialization. Adv Energy Mater 7:1601284.  https://doi.org/10.1002/aenm.201601284 CrossRefGoogle Scholar
  219. Zhou L, Tian M, Deng Y, Zheng Q, Xu C, Lin D (2016a) La2O3-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials with enhanced specific capacity and cycling stability for lithium-ion batteries. Ceram Int 42:15623–15633.  https://doi.org/10.1016/j.ceramint.2016.07.016 CrossRefGoogle Scholar
  220. Zhou Y, Bai P, Tang H, Zhu J, Tang Z (2016b) Chemical deposition synthesis of desirable high-rate capability Al2O3-coated Li1.2Mn0.54Ni0.13Co0.13O2 as a lithium ion battery cathode material. J Electroanal Chem 782:256–263.  https://doi.org/10.1016/j.jelechem.2016.10.049 CrossRefGoogle Scholar
  221. Zhuo H, Zhang Y, Wang D, He C, Zhu C, Zhang Q, Li C, Sun L, Liu J, Chen S (2014) Insight into lithium-rich layered cathode materials Li[Li0.1Ni0.45Mn0.45]O2 in situ coated with graphene-like carbon. Electrochim Acta 149:42–48.  https://doi.org/10.1016/j.electacta.2014.10.078 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations