Skip to main content
Log in

Impacts of zeolite nanoparticles on substrate properties of thin film nanocomposite membranes for engineered osmosis

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this work, microporous substrates modified by zeolite nanoparticles were prepared and used for composite membrane making with the aim of reducing internal concentration polarization (ICP) effect of membranes during engineered osmosis applications. Nanocomposite substrates were fabricated via phase inversion technique by embedding nanostructured zeolite (clinoptilolite) in the range of 0–0.6 wt% into matrix of polyethersulfone (PES) substrate. Of all the substrates prepared, the PES0.4 substrate (with 0.4 wt% zeolite) exhibited unique characteristics, i.e., increased surface porosity, lower structural parameter (S) (from 0.78 to 0.48 mm), and enhanced water flux. The thin film nanocomposite (TFN) membrane made of this optimized substrate was also reported to exhibit higher water flux compared to the control composite membrane during forward osmosis (FO) and pressure-retarded osmosis (PRO) test, without compromising reverse solute flux. The water flux of such TFN membrane was 43% higher than the control TFC membrane (1.93 L/m2 h bar) with salt rejection recorded at 94.7%. An increment in water flux is ascribed to the reduction in structural parameter, leading to reduced ICP effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Al-Degs Y, Tutunji M, Baker H (2003) Isothermal and kinetic adsorption behaviour of Pb2+ ions on natural silicate minerals. Clay Miner 38(4):501–509

    Article  Google Scholar 

  • Amini M, Rahimpour A, Jahanshahi M (2016) Forward osmosis application of modified TiO2-polyamide thin film nanocomposite membranes. Desalin Water Treat 57(30):14013–14023

    Article  Google Scholar 

  • Armbruster T (2001) Clinoptilotite-heulandite: applications and basic research. Stud Surf Sci Catal 135:13–27

    Article  Google Scholar 

  • Barrer R, Makki M (1964) Molecular sieve sorbents from clinoptilolite. Can J Chem 42(6):1481–1487

    Article  Google Scholar 

  • Cakicioglu-Ozkan F, Ulku S (2005) The effect of HCl treatment on water vapor adsorption characteristics of clinoptilolite rich natural zeolite. Microporous Mesoporous Mater 77(1):47–53

    Article  Google Scholar 

  • Cath TY, Childress AE, Elimelech M (2006) Forward osmosis: principles, applications, and recent developments. J Membr Sci 281(1):70–87

    Article  Google Scholar 

  • Coday BD, Hoppe-Jones C, Wandera D, Shethji J, Herron J, Lampi K, Snyder SA, Cath TY (2016) Evaluation of the transport parameters and physiochemical properties of forward osmosis membranes after treatment of produced water. J Membr Sci 499:491–502

    Article  Google Scholar 

  • Colella C (2005) Natural zeolites. Stud Surf Sci Catal 157:13–40

    Article  Google Scholar 

  • Cordoves AP, Valdés MG, Fernández JT, Luis GP, García-Calzón J, García MD (2008) Characterization of the binding site affinity distribution of a surfactant-modified clinoptilolite. Microporous Mesoporous Mater 109(1):38–48

    Article  Google Scholar 

  • Dabaghian Z, Rahimpour A, Jahanshahi M (2016) Highly porous cellulosic nanocomposite membranes with enhanced performance for forward osmosis desalination. Desalination 381:117–125

    Article  Google Scholar 

  • Darabi RR, Peyravi M, Jahanshahi M, Amiri AAQ (2017) Decreasing ICP of forward osmosis (TFN-FO) membrane through modifying PES-Fe3O4 nanocomposite substrate. Korean J Chem Eng 34(8):2311–2324

    Article  Google Scholar 

  • Emadzadeh D, Lau W, Ismail A (2013) Synthesis of thin film nanocomposite forward osmosis membrane with enhancement in water flux without sacrificing salt rejection. Desalination 330:90–99

    Article  Google Scholar 

  • Ghanbari M, Emadzadeh D, Lau W, Riazi H, Almasi D, Ismail A (2016) Minimizing structural parameter of thin film composite forward osmosis membranes using polysulfone/halloysite nanotubes as membrane substrates. Desalination 377:152–162

    Article  Google Scholar 

  • Jahanshahi M, Peyravi M, Fauzi Ismail A, Nabipour MR (2016) A new insight into morphology of solvent resistant nanofiltration (SRNF) membranes: image processing assisted review. J Chem Pet Eng 50(1):15–39

    Google Scholar 

  • Khajouei M, Peyravi M, Jahanshahi M (2017) The potential of nanoparticles for upgrading thin film nanocomposite membranes—a review. J Membr Sci Res 3(1):2–12

    Google Scholar 

  • Li Z (1999) Sorption kinetics of hexadecyltrimethylammonium on natural clinoptilolite. Langmuir 15(19):6438–6445

    Article  Google Scholar 

  • Li P, Lim S, Neo J, Ong R, Weber M, Staudt C, Widjojo N, Maletzko C, Chung T (2014) Short-and long-term performance of the thin-film composite forward osmosis (TFC-FO) hollow fiber membranes for oily wastewater purification. Ind Eng Chem Res 53(36):14056–14064

    Article  Google Scholar 

  • Liu X, Ng HY (2015) Fabrication of layered silica–polysulfone mixed matrix substrate membrane for enhancing performance of thin-film composite forward osmosis membrane. J Membr Sci 481:148–163

    Article  Google Scholar 

  • Loeb S, Titelman L, Korngold E, Freiman J (1997) Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane. J Membr Sci 129(2):243–249

    Article  Google Scholar 

  • Ma N, Wei J, Liao R, Tang CY (2012) Zeolite-polyamide thin film nanocomposite membranes: towards enhanced performance for forward osmosis. J Membr Sci 405:149–157

    Article  Google Scholar 

  • Ma N, Wei J, Qi S, Zhao Y, Gao Y, Tang CY (2013) Nanocomposite substrates for controlling internal concentration polarization in forward osmosis membranes. J Membr Sci 441:54–62

    Article  Google Scholar 

  • Madejová J (2003) FTIR techniques in clay mineral studies. Vib Spectrosc 31(1):1–10

    Article  Google Scholar 

  • Mehta GD, Loeb S (1978) Internal polarization in the porous substructure of a semipermeable membrane under pressure-retarded osmosis. J Membr Sci 4:261–265

    Article  Google Scholar 

  • Montanari T, Busca G (2008) On the mechanism of adsorption and separation of CO2 on LTA zeolites: an IR investigation. Vib Spectrosc 46(1):45–51

    Article  Google Scholar 

  • Ng E-P, Mintova S (2008) Nanoporous materials with enhanced hydrophilicity and high water sorption capacity. Microporous Mesoporous Mater 114:1): 1–1):26

    Article  Google Scholar 

  • Perego C, Bagatin R, Tagliabue M, Vignola R (2013) Zeolites and related mesoporous materials for multi-talented environmental solutions. Microporous Mesoporous Mater 166:37–49

    Article  Google Scholar 

  • Peyravi M, Rahimpour A, Jahanshahi M, Javadi A, Shockravi A (2012) Tailoring the surface properties of PES ultrafiltration membranes to reduce the fouling resistance using synthesized hydrophilic copolymer. Microporous Mesoporous Mater 160:114–125

    Article  Google Scholar 

  • Peyravi M, Jahanshahi M, Rahimpour A, Javadi A, Hajavi S (2014) Novel thin film nanocomposite membranes incorporated with functionalized TiO2 nanoparticles for organic solvent nanofiltration. Chem Eng J 241:155–166

    Article  Google Scholar 

  • Porter M (1994) Handbook of surfactants. Blackie Academic And Professional, Glasgow

    Book  Google Scholar 

  • Pouresmaeel-Selkjani P, Jahanshahi M, Peyravi M (2017) Mechanical, thermal, and morphological properties of nanoporous reinforced polysulfone membranes. High Perform Polym 29(7):759–771

  • Rivera A, Farías T, De Menorval LC, Autié-Castro G, Yee-Madeira H, Contreras JL, Autié-Pérez M (2011) Acid natural clinoptilolite: structural properties against adsorption/separation of n-paraffins. J Colloid Interface Sci 360(1):220–226

    Article  Google Scholar 

  • Shafaei N, Peyravi M, Jahanshahi M (2016) Improving surface structure of photocatalytic self-cleaning membrane by WO3/PANI nanoparticles. Polym Adv Technol 27(10):1325–1337

    Article  Google Scholar 

  • Shaffer DL, Werber JR, Jaramillo H, Lin S, Elimelech M (2015) Forward osmosis: where are we now? Desalination 356:271–284

    Article  Google Scholar 

  • Sharifian S, Nezamzadeh-Ejhieh A (2016) Modification of carbon paste electrode with Fe (III)-clinoptilolite nano-particles for simultaneous voltammetric determination of acetaminophen and ascorbic acid. Mater Sci Eng C 58:510–520

    Article  Google Scholar 

  • Shi L, Chou S, Wang R, Fang W, Tang C, Fane A (2011) Effect of substrate structure on the performance of thin-film composite forward osmosis hollow fiber membranes. J Membr Sci 382(1):116–123

    Article  Google Scholar 

  • Song X, Liu Z, Sun DD (2011) Nano gives the answer: breaking the bottleneck of internal concentration polarization with a nanofiber composite forward osmosis membrane for a high water production rate. Adv Mater 23(29):3256–3260

    Article  Google Scholar 

  • Tang CY, She Q, Lay WC, Wang R, Fane AG (2010) Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration. J Membr Sci 354(1):123–133

    Article  Google Scholar 

  • Tian M, Wang Y-N, Wang R, Fane AG (2017) Synthesis and characterization of thin film nanocomposite forward osmosis membranes supported by silica nanoparticle incorporated nanofibrous substrate. Desalination 401:142–150

    Article  Google Scholar 

  • Tiraferri A, Yip NY, Phillip WA, Schiffman JD, Elimelech M (2011) Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure. J Membr Sci 367(1):340–352

    Article  Google Scholar 

  • Wang R, Shi L, Tang CY, Chou S, Qiu C, Fane AG (2010) Characterization of novel forward osmosis hollow fiber membranes. J Membr Sci 355(1):158–167

    Article  Google Scholar 

  • Wei J, Qiu C, Tang CY, Wang R, Fane AG (2011) Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes. J Membr Sci 372(1):292–302

    Article  Google Scholar 

  • Wei J, Li Y, Setiawan L, Wang R (2016) Influence of macromolecular additive on reinforced flat-sheet thin film composite pressure-retarded osmosis membranes. J Membr Sci 511:54–64

    Article  Google Scholar 

  • Weitkamp J (2000) Zeolites and catalysis. Solid State Ionics 131(1):175–188

    Article  Google Scholar 

  • Wu G, Gan S, Cui L, Xu Y (2008) Preparation and characterization of PES/TiO2 composite membranes. Appl Surf Sci 254(21):7080–7086

    Article  Google Scholar 

  • Xie M, Price WE, Nghiem LD (2012) Rejection of pharmaceutically active compounds by forward osmosis: role of solution pH and membrane orientation. Sep Purif Technol 93:107–114

    Article  Google Scholar 

  • Yan W, Wang Z, Wu J, Zhao S, Wang J, Wang S (2016) Enhancing the flux of brackish water TFC RO membrane by improving support surface porosity via a secondary pore-forming method. J Membr Sci 498:227–241

    Article  Google Scholar 

  • Yang Y, Wang P (2006) Preparation and characterizations of a new PS/TiO2 hybrid membranes by sol–gel process. Polymer 47(8):2683–2688

    Article  Google Scholar 

  • Yilmaz B, Müller U (2009) Catalytic applications of zeolites in chemical industry. Top Catal 52(6–7):888–895

    Article  Google Scholar 

  • Yip NY, Tiraferri A, Phillip WA, Schiffman JD, Elimelech M (2010) High performance thin-film composite forward osmosis membrane. Environ Sci Technol 44(10):3812–3818

    Article  Google Scholar 

  • Yuliwati E, Ismail A, Matsuura T, Kassim M, Abdullah M (2011) Characterization of surface-modified porous PVDF hollow fibers for refinery wastewater treatment using microscopic observation. Desalination 283:206–213

    Article  Google Scholar 

  • Zhang S, Wang KY, Chung T-S, Chen H, Jean Y, Amy G (2010) Well-constructed cellulose acetate membranes for forward osmosis: minimized internal concentration polarization with an ultra-thin selective layer. J Membr Sci 360(1):522–535

    Article  Google Scholar 

  • Zhang X, Tian J, Gao S, Zhang Z, Cui F, Tang CY (2017) In situ surface modification of thin film composite forward osmosis membranes with sulfonated poly (arylene ether sulfone) for anti-fouling in emulsified oil/water separation. J Membr Sci 527:26–34

    Article  Google Scholar 

  • Zirehpour A, Rahimpour A, Seyedpour F, Jahanshahi M (2015) Developing new CTA/CA-based membrane containing hydrophilic nanoparticles to enhance the forward osmosis desalination. Desalination 371:46–57

    Article  Google Scholar 

  • Zou S, Gu Y, Xiao D, Tang CY (2011) The role of physical and chemical parameters on forward osmosis membrane fouling during algae separation. J Membr Sci 366(1):356–362

    Article  Google Scholar 

Download references

Funding

This study was funded by the Kavosh Institute of Higher Education and the Babol Noshirvani University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Jahanshahi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi, T.M., Peyravi, M., Jahanshahi, M. et al. Impacts of zeolite nanoparticles on substrate properties of thin film nanocomposite membranes for engineered osmosis. J Nanopart Res 20, 113 (2018). https://doi.org/10.1007/s11051-018-4154-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4154-1

Keywords

Navigation