Advertisement

Effect of silver/copper and copper oxide nanoparticle powder on growth of Gram-negative and Gram-positive bacteria and their toxicity against the normal human dermal fibroblasts

  • Jerzy Peszke
  • Anna Nowak
  • Jacek Szade
  • Agnieszka Szurko
  • Dorota Zygadło
  • Marlena Michałowska
  • Paweł Krzyściak
  • Patrycja Zygoń
  • Alicja Ratuszna
  • Marek M. Ostafin
Research Paper

Abstract

Engineered nanomaterials, especially metallic nanoparticles, are the most popular system applied in daily life products. The study of their biological and toxicity properties seems to be indispensable. In this paper, we present results of biological activity of Ag/Cu nanoparticles. These nanoparticles show more promising killing/inhibiting properties on Gram-negative bacteria than for Gram-positive ones. The Gram-negative bacteria show strong effect already at the concentration of 1 ppm after 15 min of incubation. Moreover, in vitro tests of toxicity made on normal human dermal fibroblast cultures showed that after 72 h of incubation with Ag/Cu nanoparticles, they are less toxic then Cu2O/CuO nanoparticles.

Keywords

Nanoparticles Copper oxide Copper/silver Toxicity Biological activity 

References

  1. Bernard V, Zobač O, Sopoušek J, Mornstein V (2014) AgCu bimetallic nanoparticles under effect of low intensity ultrasound: the cell viability study in vitro. Journal of Cancer Research 2014:1–6. doi: 10.1155/2014/971769 CrossRefGoogle Scholar
  2. Calero MMS, Gutiérrez LPD, Salas GPD et al (2014) Efficient and safe internalization of magnetic iron oxide nanoparticles: two fundamental requirements for biomedical applications. Nanomedicine: Nanotechnology, Biology, and Medicine 10:733–743. doi: 10.1016/j.nano.2013.11.010 Google Scholar
  3. Chen S, Guo Y, Chen S et al (2012) Fabrication of Cu/TiO2 nanocomposite: toward an enhanced antibacterial performance in the absence of light. Mater Lett 83:154–157. doi: 10.1016/j.matlet.2012.06.007 CrossRefGoogle Scholar
  4. Czaplinska J, Sobczak I, Ziolek M (2014) Bimetallic AgCu/SBA-15 system: the effect of metal loading and treatment of catalyst on surface properties. J Phys Chem C 118:12796–12810. doi: 10.1021/jp5011764 CrossRefGoogle Scholar
  5. Feng QL, Wu J, Chen GQ et al (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biological Material Research 52:662–668CrossRefGoogle Scholar
  6. Goetz von N, Lorenz C, Windler L et al (2013) Migration of Ag- and TiO 2-(Nano)particles from textiles into artificial sweat under physical stress: experiments and exposure modeling. Environ Sci Technol 47:9979–9987. doi: 10.1021/es304329w CrossRefGoogle Scholar
  7. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021. doi: 10.1016/j.biomaterials.2004.10.012 CrossRefGoogle Scholar
  8. Jung WK, Koo HC, Kim KW et al (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171–2178. doi: 10.1128/AEM.02001-07 CrossRefGoogle Scholar
  9. Le Ouay B, Stellacci F (2015) Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10:339–354. doi: 10.1016/j.nantod.2015.04.002 CrossRefGoogle Scholar
  10. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49. doi: 10.1002/smll.200700595 CrossRefGoogle Scholar
  11. Li XZ, Nikaido H, Williams KE (1997) Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J Bacteriol 179:6127–6132CrossRefGoogle Scholar
  12. Li F, Lei C, Shen Q et al (2013a) Analysis of copper nanoparticles toxicity based on a stress-responsive bacterial biosensor array. Nanoscale 5:653–662. doi: 10.1039/C2NR32156D CrossRefGoogle Scholar
  13. Li L, Jiang W, Luo K et al (2013b) Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics 3:595–615. doi: 10.7150/thno.5366 CrossRefGoogle Scholar
  14. Maynard AD, Aitken RJ, Butz T et al (2006) Safe handling of nanotechnology. Nature 444:267–269. doi: 10.1038/444267a CrossRefGoogle Scholar
  15. Mcquillan JS, Shaw AM (2014) Whole-cell Escherichia coli-based bio-sensor assay for dual zinc oxide nanoparticle toxicity mechanisms. Biosensors and Bioelectronic 51:274–279. doi: 10.1016/j.bios.2013.07.024 CrossRefGoogle Scholar
  16. Morones-Ramirez JR, Winkler JA, Spina CS, Collins JJ (2013) Silver enhances antibiotic activity against gram-negative bacteria. Sci Transl Med 5:190ra81–190ra81. doi: 10.1126/scitranslmed.3006276 CrossRefGoogle Scholar
  17. Nigra MM, Arslan I, Katz A (2012) Gold nanoparticle-catalyzed reduction in a model system: quantitative determination of reactive heterogeneity of a supported nanoparticle surface. J Catal 295:115–121. doi: 10.1016/j.jcat.2012.08.001 CrossRefGoogle Scholar
  18. Notter DA, Mitrano DM, Nowack B (2014) Are nanosized or dissolved metals more toxic in the environment? A meta-analysis. Environ Toxicol Chem 33:2733–2739. doi: 10.1002/etc.2732 CrossRefGoogle Scholar
  19. Nowack B, Brouwer C, Geertsma RE et al (2013) Analysis of the occupational, consumer and environmental exposure to engineered nanomaterials used in 10 technology sectors. Nanotoxicology 7:1152–1156. doi: 10.3109/17435390.2012.711863 CrossRefGoogle Scholar
  20. Nowack B, Mueller NC, Krug HF, Wick P (2014) How to consider engineered nanomaterials in major accident regulations? Environ Sci Eur 26:2–10. doi: 10.1186/2190-4715-26-2 CrossRefGoogle Scholar
  21. Nowak A, Szade J, Talik E et al (2014) Structural, spectroscopic and biological investigation of copper oxides nanoparticles with various capping agents. Mater Chem Phys 145:465–470. doi: 10.1016/j.matchemphys.2014.02.049 CrossRefGoogle Scholar
  22. Nowak A, Szade J, Talik E et al (2016) Physicochemical and antibacterial characterization of ionocity Ag/Cu powder nanoparticles. Mater Charact 117:9–16. doi: 10.1016/j.matchar.2016.04.013 CrossRefGoogle Scholar
  23. Percival SL, Bowler PG, Russell D (2005) Bacterial resistance to silver in wound care. J Hosp Infect 60:1–7. doi: 10.1016/j.jhin.2004.11.014 CrossRefGoogle Scholar
  24. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:32–10. doi: 10.1186/2228-5326-2-32 CrossRefGoogle Scholar
  25. Pradhan A, Seena S, Pascoal C, Cássio F (2011) Can metal nanoparticles be a threat to microbial decomposers of plant litter in streams? Microb Ecol 62:58–68. doi: 10.1007/s00248-011-9861-4 CrossRefGoogle Scholar
  26. Raffi M, Mehrwan S, Bhatti TM et al (2010) Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann Microbiol 60:75–80. doi: 10.1007/s13213-010-0015-6 CrossRefGoogle Scholar
  27. Ramazanzadeh B, Jahanbin A, Yaghoubi M et al (2015) Comparison of antibacterial effects of ZnO and CuO nanoparticles coated brackets against Streptococcus mutans. J Dent Shiraz Univ Med Sci 16:200–205Google Scholar
  28. Santo CE, Lam EW, Elowsky CG et al (2011) Bacterial killing by dry metallic copper surfaces. Appl Environ Microbiol 77:794–802. doi: 10.1128/AEM.01599-10 CrossRefGoogle Scholar
  29. Schweiger C, Pietzonka C, Heverhagen J, Kissel T (2011) Novel magnetic iron oxide nanoparticles coated with poly(ethylene imine)-g-poly(ethylene glycol) for potential biomedical application: synthesis, stability, cytotoxicity and MR imaging. Int J Pharm 408:130–137. doi: 10.1016/j.ijpharm.2010.12.046 CrossRefGoogle Scholar
  30. Shobha G, Moses V, Amanda S (2014) Biological synthesis of copper nanoparticles and its impact—a review. International Journal of Pharmaceutical Science Invention 3:28–38Google Scholar
  31. Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353. doi: 10.1016/S0168-6445(03)00047-0 CrossRefGoogle Scholar
  32. Singh HP, Gupta N, Sharma SK, Sharma RK (2013) Synthesis of bimetallic Pt–Cu nanoparticles and their application in the reduction of rhodamine B. Colloids Surf A Physicochem Eng Asp 416:43–50. doi: 10.1016/j.colsurfa.2012.09.048 CrossRefGoogle Scholar
  33. Sowa-Söhle EN, Schwenke A, Wagener P et al (2013) Antimicrobial efficacy, cytotoxicity, and ion release of mixed metal (Ag, Cu, Zn, Mg) nanoparticle polymer composite implant material. BioNanoMaterials 14:1–11. doi: 10.1515/bnm-2013-0012 CrossRefGoogle Scholar
  34. Suh WH, Suslick KS, Stucky GD, Suh Y-H (2009) Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol 87:133–170. doi: 10.1016/j.pneurobio.2008.09.009 CrossRefGoogle Scholar
  35. Sun TY, Gottschalk F, Hungerbühler K, Nowack B (2014) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76. doi: 10.1016/j.envpol.2013.10.004 CrossRefGoogle Scholar
  36. Valodkar M, Modi S, Pal A, Thakore S (2010) Synthesis and anti-bacterial activity of Cu, Ag and Cu–Ag alloy nanoparticles: a green approach. Mater Res Bull 46:384–389. doi: 10.1016/j.materresbull.2010.12.001 CrossRefGoogle Scholar
  37. Vance ME, Kuiken T, Vejerano EP et al (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780. doi: 10.3762/bjnano.6.181 CrossRefGoogle Scholar
  38. Vaseem M, Umar A, Hahn YB (2010) ZnO nanoparticles: growth, properties, and applications. In: Umar A, Hahn YB (eds) Metal oxide nanostructures and their applications, vol 5. American scientific publishers, New York, pp 1–36Google Scholar
  39. Yah CS, Simat ES, Iyuke SE (2012) Nanoparticles toxicity and their routes of exposures. Pak J Pharm Sci 25:477–491Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Jerzy Peszke
    • 1
    • 2
  • Anna Nowak
    • 1
    • 2
  • Jacek Szade
    • 1
    • 2
  • Agnieszka Szurko
    • 1
    • 2
  • Dorota Zygadło
    • 1
    • 2
  • Marlena Michałowska
    • 1
    • 2
  • Paweł Krzyściak
    • 3
  • Patrycja Zygoń
    • 4
  • Alicja Ratuszna
    • 1
    • 2
  • Marek M. Ostafin
    • 5
  1. 1.A. Chelkowski Institute of PhysicsUniversity of SilesiaKatowicePoland
  2. 2.Silesian Center for Education and Interdisciplinary ResearchChorzówPoland
  3. 3.Department of Mycology Chair of MicrobiologyJagiellonian University Medical CollegeKrakówPoland
  4. 4.Institute of Materials EngineeringCzestochowa University of TechnologyCzęstochowaPoland
  5. 5.Department of Microbiology University of AgricultureKrakówPoland

Personalised recommendations