Advertisement

Facile synthesis of ultrafine SnO2 nanoparticles on graphene nanosheets via thermal decomposition of tin-octoate as anode for lithium ion batteries

  • Jinkai Wang
  • Sanmu Xie
  • Daxian Cao
  • Xuan Lu
  • Lingjie Meng
  • Guidong Yang
  • Hongkang Wang
Research Paper

Abstract

We demonstrate a facile synthesis of ultrafine SnO2 nanoparticles within graphene nanosheets (GNSs) via thermal decomposition of tin-octoate, in which tin-octoate is firstly blended with GNSs followed by annealing in air at a low temperature (350 °C) and a short time (1 h). As anode for lithium ion batteries, the SnO2/GNSs displays superior cycle and rate performance, delivering reversible capacities of 803 and 682 mA h/g at current densities of 200 and 500 mA/g after 120 cycles, respectively, much higher than that of pure SnO2 and GNSs counterparts (143 and 310 mA h/g at 500 mA/g after 120 cycles, respectively). The enhanced electrochemical performance is attributed to the ultrafine SnO2 nanoparticle size and introduction of GNSs. GNSs prevent the aggregation of the ultrafine SnO2 nanoparticles, which alleviate the stress and also provide more electrochemically active sites for lithium insertion and extraction. Moreover, GNSs with large specific surface area (~363 m2/g) act as a good electrical conductor which greatly improves the electrode conductivity and also an excellent buffer matrix to tolerate the severe volume changes originated from the Li-Sn alloying-dealloying. This work provides a straight-forward synthetic approach for the design of novel composite anode materials with superior electrochemical performance.

Keywords

Lithium ion batteries In situ synthesis Graphene nanosheets SnO2 nanoparticles Superior electrochemical properties Two-dimensional materials Energy storage 

Notes

Acknowledgments

This work was supported by the National Science Foundation of China (Grant No. 51402232 and 51521065), the Fundamental Research Funds for the Central Universities in China, the Natural Science Basis Research Plan in Shaanxi Province of China (Grant No. 2015JQ5131) and the Open Fund of the State Key Laboratory of Luminescent Materials and Devices (South China University of Technology, Grant No. 2016-skllmd-04). The authors also thank Ms. Yazhu Dai and Mr. Chuansheng Ma for their help with SEM/TEM measurements, carried out at International Center for Dielectric Research (ICDR), Xi’an Jiaotong University, Xi’an, China.

Supplementary material

11051_2016_3590_MOESM1_ESM.docx (7.1 mb)
Supplementary material 1 (DOCX 7302 kb)

References

  1. Armstrong MJ, O’Dwyer C, Macklin WJ, Holmes JD (2014) Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res 7:1–62. doi: 10.1007/s12274-013-0375-x CrossRefGoogle Scholar
  2. Cai D et al (2014) A nanocomposite of tin dioxide octahedral nanocrystals exposed to high-energy facets anchored onto graphene sheets for high performance lithium-ion batteries. J Mater Chem A 2:13990. doi: 10.1039/c4ta01850h CrossRefGoogle Scholar
  3. Cai D et al (2015) Tin dioxide dodecahedral nanocrystals anchored on graphene sheets with enhanced electrochemical performance for lithium-ion batteries. Electrochim Acta 159:46–51. doi: 10.1016/j.electacta.2015.01.090 CrossRefGoogle Scholar
  4. Chan CK, Peng HL, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35. doi: 10.1038/nnano.2007.411 CrossRefGoogle Scholar
  5. Chen JS, Lou XW (2013) SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9:1877–1893. doi: 10.1002/smll.201202601 CrossRefGoogle Scholar
  6. Demir-Cakan R, Hu Y-S, Antonietti M, Maier J, Titirici M-M (2008) Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chem Mater 20:1227–1229. doi: 10.1021/cm7031288 CrossRefGoogle Scholar
  7. Deng D, Lee JY (2008) Hollow core-shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li+ ion storage. Chem Mater 20:1841–1846. doi: 10.1021/cm7030575 CrossRefGoogle Scholar
  8. Ding S, Luan D, Boey FY, Chen JS, Lou XW (2011) SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties. Chem Commun 47:7155–7157. doi: 10.1039/c1cc11968k CrossRefGoogle Scholar
  9. Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Tin-based amorphous oxide: a high-capacity lithium-ion-storage. Mater Sci 276:1395–1397. doi: 10.1126/science.276.5317.1395 Google Scholar
  10. Jin Y-H, Min K-M, Seo S-D, Shim H-W, Kim D-W (2011) Enhanced Li storage capacity in 3 nm diameter SnO2 nanocrystals firmly anchored on multiwalled carbon nanotubes. J Phys Chem C 115:22062–22067. doi: 10.1021/jp208021w CrossRefGoogle Scholar
  11. Larese C, Campos-Martin JM, Fierro JLG (2000) Alumina- and zirconia−alumina-loaded tin−platinum. Surface features and performance for butane dehydrogenation. Langmuir 16:10294–10300. doi: 10.1021/la0009644 CrossRefGoogle Scholar
  12. Li Y, Lu X, Wang H, Xie C, Yang G, Niu C (2015) Growth of ultrafine SnO2 nanoparticles within multiwall carbon nanotube networks: non-solution synthesis and excellent electrochemical properties as anodes for lithium ion batteries. Electrochim Acta 178:778–785. doi: 10.1016/j.electacta.2015.08.078 CrossRefGoogle Scholar
  13. Liu J, Li W, Manthiram A (2010) Dense core-shell structured SnO2/C composites as high performance anodes for lithium ion batteries. Chem Commun 46:1437–1439. doi: 10.1039/b918501a CrossRefGoogle Scholar
  14. Liu X-M, Huang ZD, Oh SW, Zhang B, Ma P-C, Yuen MMF, Kim J-K (2012) Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: a review. Compos Sci Technol 72:121–144. doi: 10.1016/j.compscitech.2011.11.019 CrossRefGoogle Scholar
  15. Liu X, Cheng J, Li W, Zhong X, Yang Z, Gu L, Yu Y (2014) Superior lithium storage in a 3D macroporous graphene framework/SnO2 nanocomposite. Nanoscale 6:7817–7822. doi: 10.1039/c4nr01493f CrossRefGoogle Scholar
  16. Liu L, An M, Yang P, Zhang J (2015) Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries. Sci Rep 5:9055. doi: 10.1038/srep09055 CrossRefGoogle Scholar
  17. Lou XW, Wang Y, Yuan C, Lee JY, Archer LA (2006) Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv Mater 18:2325–2329. doi: 10.1002/adma.200600733 CrossRefGoogle Scholar
  18. Lu X, Wang H, Wang Z, Jiang Y, Cao D, Yang G (2016) Room-temperature synthesis of colloidal SnO2 quantum dot solution and ex situ deposition on carbon nanotubes as anode materials for lithium ion batteries. J Alloys Compd 680:109–115. doi: 10.1016/j.jallcom.2016.04.128 CrossRefGoogle Scholar
  19. Nazar LF, Goward G, Leroux F, Duncan M, Huang H, Kerr T, Gaubicher J (2001) Nanostructured materials for energy storage International. J Inorg Mater 3:191–200. doi: 10.1016/s1466-6049(01)00026-5 CrossRefGoogle Scholar
  20. Park S-K et al (2012) A facile hydrazine-assisted hydrothermal method for the deposition of monodisperse SnO2 nanoparticles onto graphene for lithium ion batteries. J Mater Chem 22:2520–2525. doi: 10.1039/c1jm14199f CrossRefGoogle Scholar
  21. Potts JR, Murali S, Zhu Y, Zhao X, Ruoff RS (2011) Microwave-exfoliated graphite oxide/polycarbonate composites. Macromolecules 44:6488–6495. doi: 10.1021/ma2007317 CrossRefGoogle Scholar
  22. Sangjin H, Byungchul J, Taeahn K, Oh SM, Taeghwan H (2005) Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes. Adv Funct Mater 15:1845–1850. doi: 10.1002/adfm.200500243 CrossRefGoogle Scholar
  23. Stankovich S et al (2006) Graphene-based composite materials. Nature 442:282–286. doi: 10.1038/nature04969 CrossRefGoogle Scholar
  24. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRefGoogle Scholar
  25. Wang H, Rogach AL (2014) Hierarchical SnO2 nanostructures: recent advances in design, synthesis, and applications. Chem Mater 26:123–133. doi: 10.1021/cm4018248 CrossRefGoogle Scholar
  26. Wang Y, Zeng HC, Lee JY (2006) Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv Mater 18:645–649. doi: 10.1002/adma.200501883 CrossRefGoogle Scholar
  27. Wang C, Zhou Y, Ge M, Xu X, Zhang Z, Jiang JZ (2010) Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity. J Am Chem Soc 132:46–47. doi: 10.1021/ja909321d CrossRefGoogle Scholar
  28. Wang Z, Luan D, Boey FYC, Lou XW (2011) Fast formation of SnO2 nanoboxes with enhanced lithium storage capability. J Am Chem Soc 133:4738–4741. doi: 10.1021/ja2004329 CrossRefGoogle Scholar
  29. Wang H et al (2012) Hydrothermal synthesis of hierarchical SnO2 microspheres for gas sensing and lithium-ion batteries applications: fluoride-mediated formation of solid and hollow structures. J Mater Chem 22:2140–2148. doi: 10.1039/c1jm14839g CrossRefGoogle Scholar
  30. Wang H et al (2013a) Hierarchical assembly of Ti(IV)/Sn(II) co-doped SnO2 nanosheets along sacrificial titanate nanowires: synthesis, characterization and electrochemical properties. Nanoscale 5:9101–9109. doi: 10.1039/c3nr02456c CrossRefGoogle Scholar
  31. Wang X, Li Z, Yin L (2013b) Nanocomposites of SnO2@ordered mesoporous carbon (OMC) as anode materials for lithium-ion batteries with improved electrochemical performance. CrystEngComm 15:7589–7597. doi: 10.1039/c3ce41256c CrossRefGoogle Scholar
  32. Wang H, Kalytchuk S, Yang H, He L, Hu C, Teoh WY, Rogach AL (2014a) Hierarchical growth of SnO2 nanostructured films on FTO substrates: structural defects induced by Sn(ii) self-doping and their effects on optical and photoelectrochemical properties. Nanoscale 6:6084–6091. doi: 10.1039/C4NR00672K CrossRefGoogle Scholar
  33. Wang H et al (2014b) Synthesis and characterization of tin titanate nanotubes: precursors for nanoparticulate Sn-doped TiO2 anodes with synergistically improved electrochemical performance. ChemElectroChem 1:1563–1569. doi: 10.1002/celc.201402188 CrossRefGoogle Scholar
  34. Wang H et al (2016) Synthesis of SnO2 versus Sn crystals within N-doped porous carbon nanofibers via electrospinning towards high-performance lithium ion batteries. Nanoscale 8:7595–7603. doi: 10.1039/C5NR09305H CrossRefGoogle Scholar
  35. Xu C, Sun J, Gao L (2012) Direct growth of monodisperse SnO2 nanorods on graphene as high capacity anode materials for lithium ion batteries. J Mater Chem 22:975–979. doi: 10.1039/c1jm14099j CrossRefGoogle Scholar
  36. Yang Y, Ji X, Lu F, Chen Q, Banks CE (2013) The mechanistic exploration of porous activated graphene sheets-anchored SnO2 nanocrystals for application in high-performance Li-ion battery anodes. Phys Chem Chem Phys 15:15098–15105. doi: 10.1039/c3cp52808a CrossRefGoogle Scholar
  37. Yin XM, Li CC, Zhang M, Hao QY, Liu S, Chen LB, Wang TH (2010) One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries. J Phys Chem C 114:8084–8088. doi: 10.1021/jp100224x CrossRefGoogle Scholar
  38. Zhai C, Du N, Zhang H, Yu J, Yang D (2011) Multiwalled carbon nanotubes anchored with SnS2 nanosheets as high-performance anode materials of lithium-ion batteries. ACS Appl Mater Interfaces 3:4067–4074. doi: 10.1021/am200933m CrossRefGoogle Scholar
  39. Zhang M et al (2011) Fast synthesis of SnO2/graphene composites by reducing graphene oxide with stannous ions. J Mater Chem 21:1673–1676. doi: 10.1039/c0jm03410j CrossRefGoogle Scholar
  40. Zhang L, Zhang G, Wu HB, Yu L, Lou XW (2013) Hierarchical tubular structures constructed by carbon-coated SnO2 nanoplates for highly reversible lithium storage. Adv Mater 25:2589–2593. doi: 10.1002/adma.201300105 CrossRefGoogle Scholar
  41. Zhou X, Wan L-J, Guo Y-G (2013) Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv Mater 25:2152–2157. doi: 10.1002/adma.201300071 CrossRefGoogle Scholar
  42. Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS (2010) Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48:2118–2122. doi: 10.1016/j.carbon.2010.02.001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical EngineeringXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.Department of Chemistry, School of ScienceXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  3. 3.Department of Chemical Engineering, School of Chemical Engineering and TechnologyXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations