Advertisement

Optimized method of dispersion of titanium dioxide nanoparticles for evaluation of safety aspects in cosmetics

  • Karina Penedo Carvalho
  • Nathalia Balthazar Martins
  • Ana Rosa Lopes Pereira Ribeiro
  • Taliria Silva Lopes
  • Rodrigo Caciano de Sena
  • Pascal Sommer
  • José Mauro Granjeiro
Research Paper

Abstract

Nanoparticles agglomerate when in contact with biological solutions, depending on the solutions’ nature. The agglomeration state will directly influence cellular response, since free nanoparticles are prone to interact with cells and get absorbed into them. In sunscreens, titanium dioxide nanoparticles (TiO2-NPs) form mainly aggregates between 30 and 150 nm. Until now, no toxicological study with skin cells has reached this range of size distribution. Therefore, in order to reliably evaluate their safety, it is essential to prepare suspensions with reproducibility, irrespective of the biological solution used, representing the above particle size distribution range of NPs (30–150 nm) found on sunscreens. Thus, the aim of this study was to develop a unique protocol of TiO2 dispersion, combining these features after dilution in different skin cell culture media, for in vitro tests. This new protocol was based on physicochemical characteristics of TiO2, which led to the choice of the optimal pH condition for ultrasonication. The next step consisted of stabilization of protein capping with acidified bovine serum albumin, followed by an adjustment of pH to 7.0. At each step, the solutions were analyzed by dynamic light scattering and transmission electron microscopy. The final concentration of NPs was determined by inductively coupled plasma-optical emission spectroscopy. Finally, when diluted in dulbecco’s modified eagle medium, melanocytes growth medium, or keratinocytes growth medium, TiO2–NPs displayed a highly reproducible size distribution, within the desired size range and without significant differences among the media. Together, these results demonstrate the consistency achieved by this new methodology and its suitability for in vitro tests involving skin cell cultures.

Keywords

Titanium dioxide nanoparticles Dispersion pH BSA Skin culture media Health effects 

Notes

Acknowledgments

This work was supported by grants from the CNPq/PROMETRO, and the CNPq/PVE—CIÊNCIA SEM FRONTEIRAS. We would like to acknowledge the financial support of the National Institute of Metrology Quality and Technology for the Post-Doctoral (52600.017263/2013) scholarship.

Supplementary material

11051_2016_3542_MOESM1_ESM.docx (439 kb)
Supplementary material 1 (DOCX 439 kb)

References

  1. 22412:2008 I (2008) Particle size analysis—Dynamic light scattering (DLS)Google Scholar
  2. Allouni ZE, Cimpan MR, Hol PJ, Skodvin T, Gjerdet NR (2009) Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium. Colloids Surf B Biointerfaces 68:83–87. doi: 10.1016/j.colsurfb.2008.09.014 CrossRefGoogle Scholar
  3. Brant J, Lecoanet H, Wiesner MR (2005) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanopart Res 7:545–553. doi: 10.1007/s11051-005-4884-8 CrossRefGoogle Scholar
  4. Brun E et al (2014) Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia. Part fibre toxicol 11:13CrossRefGoogle Scholar
  5. Butler MK, Prow TW, Guo YN, Lin LL, Webb RI, Martin DJ (2012) High-pressure freezing/freeze substitution and transmission electron microscopy for characterization of metal oxide nanoparticles within sunscreens. Nanomedicine (Lond) 7:541–551. doi: 10.2217/nnm.11.149 CrossRefGoogle Scholar
  6. Carrière M, Pigeot-Rémy S, Casanova A, Dhawan A, Lazzaroni J-C, Guillard C, Herlin-Boime N (2014) Impact of Titanium dioxide nanoparticle dispersion state and dispersion method on their toxicity towards a549 lung cells and escherichia coli bacteria. J Transl Toxicol 1:10–20Google Scholar
  7. Chaudhry Q, Scientific Committee S (2015) Revision of the opinion on Titanium dioxide, nano form. Regul Toxicol Pharmacol. doi: 10.1016/j.yrtph.2015.09.005 Google Scholar
  8. Gamer AO, Leibold E, van Ravenzwaay B (2006) The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin. Toxicol In Vitro 20:301–307. doi: 10.1016/j.tiv.2005.08.008 CrossRefGoogle Scholar
  9. Guiot C, Spalla O (2013) Stabilization of TiO2 nanoparticles in complex medium through a pH adjustment protocol. Environ Sci Technol 47:1057–1064. doi: 10.1021/es3040736 CrossRefGoogle Scholar
  10. Halász G, Gyüre B, Jánosi IM, Szabó KG, Tél T (2007) Vortex flow generated by a magnetic stirrer. Am J Phys 75:1092–1098CrossRefGoogle Scholar
  11. Henkler F et al (2012) Risk assessment of nanomaterials in cosmetics: a European union perspective. Arch Toxicol 86:1641–1646. doi: 10.1007/s00204-012-0944-x CrossRefGoogle Scholar
  12. Hunter RJ (1981) Zeta potential in colloid science: principles and applications. Colloid Science. Academic Press Inc., LondonGoogle Scholar
  13. Iavicoli I, Leso V, Fontana L, Bergamaschi A (2011) Toxicological effects of titanium dioxide nanoparticles: a review of in vitro mammalian studies. Eur Rev Med Pharmacol Sci 15:481–508Google Scholar
  14. ISO 14887 (2000) Sample preparation—dispersing procedures for powders in liquidsGoogle Scholar
  15. Ji Z et al (2010) Dispersion and stability optimization of TiO2 nanoparticles in cell culture media. Environ Sci Technol 44:7309–7314. doi: 10.1021/es100417s CrossRefGoogle Scholar
  16. Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89CrossRefGoogle Scholar
  17. Kermanizadeh A et al (2013) An in vitro assessment of panel of engineered nanomaterials using a human renal cell line: cytotoxicity, pro-inflammatory response, oxidative stress and genotoxicity. BMC Nephrol 14:96. doi: 10.1186/1471-2369-14-96 CrossRefGoogle Scholar
  18. Kiss B et al (2008) Investigation of micronized titanium dioxide penetration in human skin xenografts and its effect on cellular functions of human skin-derived cells. Exp Dermatol 17:659–667. doi: 10.1111/j.1600-0625.2007.00683.x CrossRefGoogle Scholar
  19. Kopac T, Bozgeyik K (2010) Effect of surface area enhancement on the adsorption of bovine serum albumin onto titanium dioxide colloids and surfaces B. Biointerfaces 76:265–271. doi: 10.1016/j.colsurfb.2009.11.002 CrossRefGoogle Scholar
  20. Kosmulski M (2002) The significance of the difference in the point of zero charge between rutile and anatase. Adv Colloid Interface Sci 99:255–264CrossRefGoogle Scholar
  21. Mavon A, Miquel C, Lejeune O, Payre B, Moretto P (2007) In vitro percutaneous absorption and in vivo stratum corneum distribution of an organic and a mineral sunscreen. Skin Pharmacol Physiol 20:10–20. doi: 10.1159/000096167 CrossRefGoogle Scholar
  22. Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253. doi: 10.1093/toxsci/kfm240 CrossRefGoogle Scholar
  23. Othman SH, Abdul Rashid S, Mohd Ghazi TI, Abdullah N (2012) Dispersion and stabilization of photocatalytic TiO2 nanoparticles in aqueous suspension for coatings applications. J Nanomater 2012:10. doi: 10.1155/2012/718214 CrossRefGoogle Scholar
  24. Prasad RY et al (2013) Effect of treatment media on the agglomeration of titanium dioxide nanoparticles: impact on genotoxicity, cellular interaction, and cell cycle. ACS Nano 7:1929–1942. doi: 10.1021/nn302280n CrossRefGoogle Scholar
  25. Roco MC (1999) Nanoparticles and nanotechnology research. J Nanopart Res 1:1–6CrossRefGoogle Scholar
  26. Schilling K et al (2010) Human safety review of “nano” Titanium dioxide and Zinc oxide. Photochem Photobiol Sci 9:495–509. doi: 10.1039/b9 CrossRefGoogle Scholar
  27. Schulz J et al (2002) Distribution of sunscreens on skin. Adv Drug Deliv Rev 54(Suppl 1):S157–S163CrossRefGoogle Scholar
  28. Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:15. doi: 10.1186/1743-8977-10-15 CrossRefGoogle Scholar
  29. Song L, Yang K, Jiang W, Du P, Xing B (2012) Adsorption of bovine serum albumin on nano and bulk oxide particles in deionized water Colloids and surfaces B. Biointerfaces 94:341–346. doi: 10.1016/j.colsurfb.2012.02.011 CrossRefGoogle Scholar
  30. Suttiponparnit K, Jiang J, Sahu M, Suvachittanont S, Charinpanitkul T, Biswas P (2011) Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res Lett 6:1–8Google Scholar
  31. Taurozzi JS, Hackley VA, Wiesner MR (2012) Preparation of nanoparticle dispersions from powdered material using Ultrasonic Disruption NanoEHS Protocols. NIST Spec Publ 1200:2Google Scholar
  32. Taurozzi J, Hackley V, Wiesner M (2013a) Preparation of nanoparticle dispersions from powdered material using ultrasonic disruptionGoogle Scholar
  33. Taurozzi JS, Hackley VA, Wiesner MR (2013b) A standardised approach for the dispersion of titanium dioxide nanoparticles in biological media Nanotoxicology 7:389–401Google Scholar
  34. Tucci P et al (2013) Metabolic effects of TiO2 nanoparticles, a common component of sunscreens and cosmetics, on human keratinocytes. Cell Death Dis 4(3):e549. doi: 10.1038/cddis.2013.76 CrossRefGoogle Scholar
  35. Tyner KM, Wokovich AM, Godar DE, Doub WH, Sadrieh N (2011) The state of nano-sized titanium dioxide (TiO2) may affect sunscreen performance. Int J Cosmet Sci 33:234–244. doi: 10.1111/j.1468-2494.2010.00622.x CrossRefGoogle Scholar
  36. Wang SQ, Tooley IR (2011) Photoprotection in the era of nanotechnology. Semin Cutan Med Surg 30:210–213. doi: 10.1016/j.sder.2011.07.006 CrossRefGoogle Scholar
  37. Widegren J, Bergstrom L (2002) Electrostatic stabilization of ultrafine titania in ethanol. J Am Ceram Soc 85:523–528CrossRefGoogle Scholar
  38. Wu W et al (2014) Dispersion method for safety research on manufactured nanomaterials. Ind Health 52:54–65CrossRefGoogle Scholar
  39. Xiong S, George S, Yu H, Damoiseaux R, France B, Ng KW, Loo JS (2013) Size influences the cytotoxicity of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO(2)) nanoparticles. Arch Toxicol 87:1075–1086. doi: 10.1007/s00204-012-0938-8 CrossRefGoogle Scholar
  40. Zhang X, Yin L, Tang M, Pu Y (2010) Optimized method for preparation of TiO2 nanoparticles dispersion for biological study. J Nanosci Nanotechnol 10:5213–5219CrossRefGoogle Scholar
  41. Zhang X, Li W, Yang Z (2015) Toxicology of nanosized titanium dioxide: an update. Arch Toxicol. doi: 10.1007/s00204-015-1594-6 Google Scholar
  42. Zhao Y, Howe JL, Yu Z, Leong DT, Chu JJ, Loo JS, Ng KW (2013) Exposure to titanium dioxide nanoparticles induces autophagy in primary human keratinocytes. Small 9:387–392. doi: 10.1002/smll.201201363 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Karina Penedo Carvalho
    • 1
  • Nathalia Balthazar Martins
    • 1
  • Ana Rosa Lopes Pereira Ribeiro
    • 1
    • 4
  • Taliria Silva Lopes
    • 1
  • Rodrigo Caciano de Sena
    • 2
  • Pascal Sommer
    • 3
  • José Mauro Granjeiro
    • 1
    • 4
    • 5
  1. 1.Laboratory of Tissue Bioengineering, Division of Materials Applied To Life SciencesNational Institute of Metrology, Quality and Technology (INMETRO)Duque de CaxiasBrazil
  2. 2.Laboratory of Inorganic Analysis, Division of Chemical MetrologyNational Institute of Metrology, Quality and Technology (INMETRO)Duque de CaxiasBrazil
  3. 3.Laboratory of Tissue Biology and Therapeutic EngineeringInstitute of Biology and Chemistry of Proteins (IBCP)LyonFrance
  4. 4.Brazilian Branch of Institute of Biomaterials, Tribocorrosion and Nanomedicine (IBTN/Br)São PauloBrazil
  5. 5.Laboratory of Biotechnology Dental SchoolFederal Fluminense UniversityNiteróiBrazil

Personalised recommendations