Skip to main content

Advertisement

Log in

Optimized method of dispersion of titanium dioxide nanoparticles for evaluation of safety aspects in cosmetics

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanoparticles agglomerate when in contact with biological solutions, depending on the solutions’ nature. The agglomeration state will directly influence cellular response, since free nanoparticles are prone to interact with cells and get absorbed into them. In sunscreens, titanium dioxide nanoparticles (TiO2-NPs) form mainly aggregates between 30 and 150 nm. Until now, no toxicological study with skin cells has reached this range of size distribution. Therefore, in order to reliably evaluate their safety, it is essential to prepare suspensions with reproducibility, irrespective of the biological solution used, representing the above particle size distribution range of NPs (30–150 nm) found on sunscreens. Thus, the aim of this study was to develop a unique protocol of TiO2 dispersion, combining these features after dilution in different skin cell culture media, for in vitro tests. This new protocol was based on physicochemical characteristics of TiO2, which led to the choice of the optimal pH condition for ultrasonication. The next step consisted of stabilization of protein capping with acidified bovine serum albumin, followed by an adjustment of pH to 7.0. At each step, the solutions were analyzed by dynamic light scattering and transmission electron microscopy. The final concentration of NPs was determined by inductively coupled plasma-optical emission spectroscopy. Finally, when diluted in dulbecco’s modified eagle medium, melanocytes growth medium, or keratinocytes growth medium, TiO2–NPs displayed a highly reproducible size distribution, within the desired size range and without significant differences among the media. Together, these results demonstrate the consistency achieved by this new methodology and its suitability for in vitro tests involving skin cell cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • 22412:2008 I (2008) Particle size analysis—Dynamic light scattering (DLS)

  • Allouni ZE, Cimpan MR, Hol PJ, Skodvin T, Gjerdet NR (2009) Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium. Colloids Surf B Biointerfaces 68:83–87. doi:10.1016/j.colsurfb.2008.09.014

    Article  Google Scholar 

  • Brant J, Lecoanet H, Wiesner MR (2005) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanopart Res 7:545–553. doi:10.1007/s11051-005-4884-8

    Article  Google Scholar 

  • Brun E et al (2014) Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia. Part fibre toxicol 11:13

    Article  Google Scholar 

  • Butler MK, Prow TW, Guo YN, Lin LL, Webb RI, Martin DJ (2012) High-pressure freezing/freeze substitution and transmission electron microscopy for characterization of metal oxide nanoparticles within sunscreens. Nanomedicine (Lond) 7:541–551. doi:10.2217/nnm.11.149

    Article  Google Scholar 

  • Carrière M, Pigeot-Rémy S, Casanova A, Dhawan A, Lazzaroni J-C, Guillard C, Herlin-Boime N (2014) Impact of Titanium dioxide nanoparticle dispersion state and dispersion method on their toxicity towards a549 lung cells and escherichia coli bacteria. J Transl Toxicol 1:10–20

    Google Scholar 

  • Chaudhry Q, Scientific Committee S (2015) Revision of the opinion on Titanium dioxide, nano form. Regul Toxicol Pharmacol. doi:10.1016/j.yrtph.2015.09.005

    Google Scholar 

  • Gamer AO, Leibold E, van Ravenzwaay B (2006) The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin. Toxicol In Vitro 20:301–307. doi:10.1016/j.tiv.2005.08.008

    Article  Google Scholar 

  • Guiot C, Spalla O (2013) Stabilization of TiO2 nanoparticles in complex medium through a pH adjustment protocol. Environ Sci Technol 47:1057–1064. doi:10.1021/es3040736

    Article  Google Scholar 

  • Halász G, Gyüre B, Jánosi IM, Szabó KG, Tél T (2007) Vortex flow generated by a magnetic stirrer. Am J Phys 75:1092–1098

    Article  Google Scholar 

  • Henkler F et al (2012) Risk assessment of nanomaterials in cosmetics: a European union perspective. Arch Toxicol 86:1641–1646. doi:10.1007/s00204-012-0944-x

    Article  Google Scholar 

  • Hunter RJ (1981) Zeta potential in colloid science: principles and applications. Colloid Science. Academic Press Inc., London

    Google Scholar 

  • Iavicoli I, Leso V, Fontana L, Bergamaschi A (2011) Toxicological effects of titanium dioxide nanoparticles: a review of in vitro mammalian studies. Eur Rev Med Pharmacol Sci 15:481–508

    Google Scholar 

  • ISO 14887 (2000) Sample preparation—dispersing procedures for powders in liquids

  • Ji Z et al (2010) Dispersion and stability optimization of TiO2 nanoparticles in cell culture media. Environ Sci Technol 44:7309–7314. doi:10.1021/es100417s

    Article  Google Scholar 

  • Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89

    Article  Google Scholar 

  • Kermanizadeh A et al (2013) An in vitro assessment of panel of engineered nanomaterials using a human renal cell line: cytotoxicity, pro-inflammatory response, oxidative stress and genotoxicity. BMC Nephrol 14:96. doi:10.1186/1471-2369-14-96

    Article  Google Scholar 

  • Kiss B et al (2008) Investigation of micronized titanium dioxide penetration in human skin xenografts and its effect on cellular functions of human skin-derived cells. Exp Dermatol 17:659–667. doi:10.1111/j.1600-0625.2007.00683.x

    Article  Google Scholar 

  • Kopac T, Bozgeyik K (2010) Effect of surface area enhancement on the adsorption of bovine serum albumin onto titanium dioxide colloids and surfaces B. Biointerfaces 76:265–271. doi:10.1016/j.colsurfb.2009.11.002

    Article  Google Scholar 

  • Kosmulski M (2002) The significance of the difference in the point of zero charge between rutile and anatase. Adv Colloid Interface Sci 99:255–264

    Article  Google Scholar 

  • Mavon A, Miquel C, Lejeune O, Payre B, Moretto P (2007) In vitro percutaneous absorption and in vivo stratum corneum distribution of an organic and a mineral sunscreen. Skin Pharmacol Physiol 20:10–20. doi:10.1159/000096167

    Article  Google Scholar 

  • Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253. doi:10.1093/toxsci/kfm240

    Article  Google Scholar 

  • Othman SH, Abdul Rashid S, Mohd Ghazi TI, Abdullah N (2012) Dispersion and stabilization of photocatalytic TiO2 nanoparticles in aqueous suspension for coatings applications. J Nanomater 2012:10. doi:10.1155/2012/718214

    Article  Google Scholar 

  • Prasad RY et al (2013) Effect of treatment media on the agglomeration of titanium dioxide nanoparticles: impact on genotoxicity, cellular interaction, and cell cycle. ACS Nano 7:1929–1942. doi:10.1021/nn302280n

    Article  Google Scholar 

  • Roco MC (1999) Nanoparticles and nanotechnology research. J Nanopart Res 1:1–6

    Article  Google Scholar 

  • Schilling K et al (2010) Human safety review of “nano” Titanium dioxide and Zinc oxide. Photochem Photobiol Sci 9:495–509. doi:10.1039/b9

    Article  Google Scholar 

  • Schulz J et al (2002) Distribution of sunscreens on skin. Adv Drug Deliv Rev 54(Suppl 1):S157–S163

    Article  Google Scholar 

  • Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:15. doi:10.1186/1743-8977-10-15

    Article  Google Scholar 

  • Song L, Yang K, Jiang W, Du P, Xing B (2012) Adsorption of bovine serum albumin on nano and bulk oxide particles in deionized water Colloids and surfaces B. Biointerfaces 94:341–346. doi:10.1016/j.colsurfb.2012.02.011

    Article  Google Scholar 

  • Suttiponparnit K, Jiang J, Sahu M, Suvachittanont S, Charinpanitkul T, Biswas P (2011) Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res Lett 6:1–8

    Google Scholar 

  • Taurozzi JS, Hackley VA, Wiesner MR (2012) Preparation of nanoparticle dispersions from powdered material using Ultrasonic Disruption NanoEHS Protocols. NIST Spec Publ 1200:2

    Google Scholar 

  • Taurozzi J, Hackley V, Wiesner M (2013a) Preparation of nanoparticle dispersions from powdered material using ultrasonic disruption

  • Taurozzi JS, Hackley VA, Wiesner MR (2013b) A standardised approach for the dispersion of titanium dioxide nanoparticles in biological media Nanotoxicology 7:389–401

    Google Scholar 

  • Tucci P et al (2013) Metabolic effects of TiO2 nanoparticles, a common component of sunscreens and cosmetics, on human keratinocytes. Cell Death Dis 4(3):e549. doi:10.1038/cddis.2013.76

    Article  Google Scholar 

  • Tyner KM, Wokovich AM, Godar DE, Doub WH, Sadrieh N (2011) The state of nano-sized titanium dioxide (TiO2) may affect sunscreen performance. Int J Cosmet Sci 33:234–244. doi:10.1111/j.1468-2494.2010.00622.x

    Article  Google Scholar 

  • Wang SQ, Tooley IR (2011) Photoprotection in the era of nanotechnology. Semin Cutan Med Surg 30:210–213. doi:10.1016/j.sder.2011.07.006

    Article  Google Scholar 

  • Widegren J, Bergstrom L (2002) Electrostatic stabilization of ultrafine titania in ethanol. J Am Ceram Soc 85:523–528

    Article  Google Scholar 

  • Wu W et al (2014) Dispersion method for safety research on manufactured nanomaterials. Ind Health 52:54–65

    Article  Google Scholar 

  • Xiong S, George S, Yu H, Damoiseaux R, France B, Ng KW, Loo JS (2013) Size influences the cytotoxicity of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO(2)) nanoparticles. Arch Toxicol 87:1075–1086. doi:10.1007/s00204-012-0938-8

    Article  Google Scholar 

  • Zhang X, Yin L, Tang M, Pu Y (2010) Optimized method for preparation of TiO2 nanoparticles dispersion for biological study. J Nanosci Nanotechnol 10:5213–5219

    Article  Google Scholar 

  • Zhang X, Li W, Yang Z (2015) Toxicology of nanosized titanium dioxide: an update. Arch Toxicol. doi:10.1007/s00204-015-1594-6

    Google Scholar 

  • Zhao Y, Howe JL, Yu Z, Leong DT, Chu JJ, Loo JS, Ng KW (2013) Exposure to titanium dioxide nanoparticles induces autophagy in primary human keratinocytes. Small 9:387–392. doi:10.1002/smll.201201363

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the CNPq/PROMETRO, and the CNPq/PVE—CIÊNCIA SEM FRONTEIRAS. We would like to acknowledge the financial support of the National Institute of Metrology Quality and Technology for the Post-Doctoral (52600.017263/2013) scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina Penedo Carvalho.

Additional information

Karina Penedo Carvalho and Nathalia Balthazar Martins have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 439 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, K.P., Martins, N.B., Ribeiro, A.R.L.P. et al. Optimized method of dispersion of titanium dioxide nanoparticles for evaluation of safety aspects in cosmetics. J Nanopart Res 18, 244 (2016). https://doi.org/10.1007/s11051-016-3542-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3542-7

Keywords

Navigation