Advertisement

A pyrazolyl-based thiolato single-source precursor for the selective synthesis of isotropic copper-deficient copper(I) sulfide nanocrystals: synthesis, optical and photocatalytic activity

  • Gopinath Mondal
  • Ananyakumari Santra
  • Pradip Bera
  • Moumita Acharjya
  • Sumanta Jana
  • Dipankar Chattopadhyay
  • Anup Mondal
  • Sang Il Seok
  • Pulakesh Bera
Research Paper

Abstract

Hexagonal copper-deficient copper(I) sulfide (Cu2-x S, x = 0.03, 0.2) nanocrystals (NCs) are synthesized from a newly prepared single-source precursor (SP), [Cu(bdpa)2][CuCl2], where bdpa is benzyl 3,5-dimethyl-pyrazole-1-carbodithioate. The SP is crystallized with space group Pī and possesses a distorted tetrahedron structure with a CuN2S2 chromophore where the central copper is in +1 oxidation state. Distortion in copper(I) structure and the low decomposition temperature of SP make it favorable for the low-temperature solvent-assisted selective growth of high-copper content sulfides. The nucleation and growth of Cu2-x S (x = 0.03, 0.2) are effectively controlled by the SP and the solvent in the solvothermal decomposition process. During decomposition, fragment benzyl thiol (PhCH2SH) from SP effectively passivates the nucleus leading to spherical nanocrystals. Further, solvent plays an important role in the selective thermochemical transformation of CuI-complex to Cu2-x S (x = 0.03, 0.2) NCs. The chelating binders (solvent) like ethylene diamine (EN) and ethylene glycol (EG) prefer to form spherical Cu1.97S nanoparticles (djurleite), whereas nonchelating hydrazine hydrate (HH) shows the tendency to furnish hexagonal platelets of copper-deficient Cu1.8S. The optical band gap values (2.25–2.50 eV) show quantum confinement effect in the structure. The synthesized NCs display excellent catalytic activity (~87 %) toward photodegradation of organic dyes like Congo Red (CR) and Methylene Blue (MB).

Graphical abstract

A pyrazolyl-based thiolato single-source precursor for the selective synthesis of isotropic copper-deficient copper(I) sulfide nanocrystals: Synthesis, optical and photocatalytic activity.

Gopinath Mondal, Ananyakumari Santra, Pradip Bera, Moumita Acharjya, Sumanta Jana, Dipankar Chattopadhyay, Anup Mondal, Sang Il Seok, Pulakesh Bera.

Keywords

Solvothermal Isotropic Copper(I) sulfide Nanocrystals Photocatalytic activity 

Notes

Acknowledgments

We gratefully acknowledge the research grant from CSIR, Government of India [Grant No. 1(2534)/11/EMR-II] and UGC, Government of India [F 42-280/2013(SR)]. We are thankful to the people of CRNN, Calcutta University for TEM and SEM analysis.

Supplementary material

11051_2016_3538_MOESM1_ESM.doc (598 kb)
Fig. S1 Cu2S nanoparticles from [Cu(mdpa)2][CuCl2] precursor by using HH solvent at 180 °C. Fig. S2 Determination of rate constants for photodegradation of Cu2-xS NCs (DOC 598 kb)

References

  1. Ali MA, Mirza AH, Ting WY, Hamid AHSA, Bernhardt PV, Butcher RJ (2012) Mixed ligand nickel(II) and copper(II) complexes of tridentate ONS and NNS ligands derived from S-alkyldithiocarbazate with saccarinate ion as co-ligand. Polyhedron 48:147–173CrossRefGoogle Scholar
  2. Bera P, Kim CH, Seok SI (2008) Synthesis, spectroscopic characterization and thermal behavior of cadmium(II) complexes of S-methyldithiocarbazate (SMDTC) and S-benzyldithiocarbazate (SBDTC): X-ray crystal structure of [Cd(SMDTC)3] 2NO3. Polyhedron 27:3433–3437CrossRefGoogle Scholar
  3. Bera P, Kim CH, Seok SI (2010) Synthesis of nanocrystalline CdS from cadmium(II) complex of S-benzyl dithiocarbazate as a precursor. Solid State Sci 12:1741–1747CrossRefGoogle Scholar
  4. Chen L, Xia YD, Liang XF, Yin KB, Yin J, Liu ZG, Chen Y (2007) Nonvolatile memory devices with Cu2S and Cu-Pc bilayered films. Appl Phys Lett 91:073511–073513CrossRefGoogle Scholar
  5. Du XS, Yu ZZ, Dasari A, Ma J, Meng YZ, Mai YW (2006) Facile synthesis and assembly of Cu2S nanodisks to corncoblike nanostructures. Chem Mater 18:5156–5158CrossRefGoogle Scholar
  6. Ghahremaninezhad A, Asselin E, Dixon DG (2011) Electrodeposition and growth mechanism of copper sulfide nanowires. J Phys Chem C 115:9320–9334CrossRefGoogle Scholar
  7. Gonçalves AP, Lopes EB, Casaca A, Dias M, Almeida M (2008) Growth of CuS platelet single crystals by the high-temperature solution growth technique. J Cryst Growth 310:2742–2745CrossRefGoogle Scholar
  8. Gong JY, Yu SH, Qian HS, Luo LB, Liu XM (2006) Acetic acid-assisted solution process for growth of complex copper sulfide microtubes constructed by hexagonal nanoflakes. Chem Mater 18:2012–2015CrossRefGoogle Scholar
  9. Gorai S, Ganguli D, Chaudhuri S (2005) Synthesis of copper sulfides of varying morphologies and stoichiometries controlled by chelating and nonchelating solvents in a solvothermal process. Cryst Growth Des 5:875–877CrossRefGoogle Scholar
  10. Haram SK, Mahadeshwar AR, Dixit SG (1996) Synthesis and characterization of copper sulfide nanoparticles in Triton-X 100 water-in-oil microemulsions. J Phys Chem 100:5868–5873CrossRefGoogle Scholar
  11. He Y, Yu X, Zhao X (2007) Synthesis of hollow CuS nanostructured microspheres with novel surface morphologies. Mater Lett 61:3014–3016CrossRefGoogle Scholar
  12. Jiang X, Xie Y, Lu J, He W, Zhu L, Qian Y (2000) Preparation and phase transformation of nanocrystalline copper sulfides (Cu9S8, Cu7S4 and CuS) at low temperature. J Mater Chem 10:2193–2196. doi: 10.1039/B002486O CrossRefGoogle Scholar
  13. Khehra MS, Saini HS, Sharma DK, Chadha BS, Chimni SS (2005) Comparative studies on potential of consortium and constituent pure bacterial isolates to decolorize azo dyes. Water Res 39(20):5135–5141CrossRefGoogle Scholar
  14. Lai C-H, Lu M-Y, Chen L-J (2012) Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage. J Mater Chem 22:19–30. doi: 10.1039/C1JM13879K CrossRefGoogle Scholar
  15. Larsen TH, Sigman M, Ghezelbash A, Doty RC, Korgel BA (2003) Solventless synthesis of copper sulfide nanorods by thermolysis of a single source thiolate-derived precursor. J Am Chem Soc 125:5638–5639CrossRefGoogle Scholar
  16. Li S, Wang HZ, Xu WW, Si HL, Tao X, Lou S, Du Z, Li L (2009) Synthesis and assembly of monodisperse spherical Cu2S nanocrystals. J Coll Interf Sci 330:483–487CrossRefGoogle Scholar
  17. Lin MC, Lee MW (2011) Cu2-xS quantum dot-sensitizedsolar cells. Electrochem Commun 13:1376–1378CrossRefGoogle Scholar
  18. Liu ZP, Xu D, Liang JB, Shen JM, Zhang SY, Qian TY (2005) Growth of Cu2S ultrathin nanowires in a binary surfactant solvent. J Phys Chem B 109:10699–10704CrossRefGoogle Scholar
  19. Lou W, Chen M, Wang X, Liu W (2007) Size control of monodisperse copper sulfide faceted nanocrystals and triangular nanoplates. J Phys Chem C 111:9658–9663CrossRefGoogle Scholar
  20. Lu QY, Gao F, Zhao DY (2002) One-step synthesis and assembly of copper sulfide nanoparticles to nanowires, nanotubes, and nanovesicles by a simple organic amine-assisted hydrothermal process. Nano Lett 2:725–728CrossRefGoogle Scholar
  21. Malyarevich AM, Yumashev KV, Posnov NN, Mikhailov VP, Gurin VS, Prokopenko VB, Alexeenko AA, Melnichenko IM (2000) Nonlinear optical properties of CuxS and CuInS2 nanoparticles in sol–gel glasses. J Appl Phys 87:212CrossRefGoogle Scholar
  22. Mondal G, Bera P, Santra A, Jana S, Mondal TN, Mondal A, Seok SI, Bera P (2014) Precursor-driven selective synthesis of hexagonal chalcocite (Cu2S) nanocrystals: structural, optical, electrical and photocatalytic properties. New J Chem 38:4774–4782CrossRefGoogle Scholar
  23. Mondal G, Acharjya M, Santra A, Bera P, Jana S, Pramanik NC, Mondal A, Bera P (2015) A new pyrazolyl dithioate function in the precursor for the shape controlled growth of CdS nanocrystals: optical and photocatalytic activities. New J Chem 39:9487–9496CrossRefGoogle Scholar
  24. Mthethwa T, Pullabhotla VSRR, Mdluli PS, Wesley-Smith J, Revaprasadu N (2009) Synthesis of hexadecylamine capped CdS nanoparticles using heterocyclic cadmium dithiocarbamates as single source precursors. Polyhedron 28:2977–2982CrossRefGoogle Scholar
  25. Nair PS, Scholes GD (2006) Thermal decomposition of single source precursors and the shape evolution of CdS and CdSe nanocrystals. J Mater Chem 16:467–473CrossRefGoogle Scholar
  26. Nyamen LD, Pullabhotla VSR, Nejo AA, Ndifon P, Revaprasadu N (2011) Heterocyclic dithiocarbamates: precursors for shape controlled growth of CdS nanoparticles. New J Chem 35:1133–1139CrossRefGoogle Scholar
  27. Nyamen LD, Revaprasadu N, Pullabhotla RVSR, Nejo AA, Ndifon PT, Malik MA, O’Brien P (2013) Synthesis of multi-podal CdS nanostructures using heterocyclic dithiocarbamato complexes as precursors. Polyhedron 56:62–70CrossRefGoogle Scholar
  28. Partain LD, Mcleod PS, Duisman JA, Peterson TM, Sawyer DE, Dean CS (1983) Degradation of a Cu(x)S/CdS solar cell in hot, moist air and recovery in hydrogen and air. J Appl Phys 54:6708–6720CrossRefGoogle Scholar
  29. Reijnen L, Meester B, Goossens A, Schoonman J (2003) Atomic layer deposition of CuxS for solar energy conversion. Chem Vap Depos 9:15–20. doi: 10.1002/cvde.200290001 CrossRefGoogle Scholar
  30. Roy P, Srivastava SK (2006) Hydrothermal growth of CuS nanowires from Cu − Dithiooxamide, a novel single-source precursor. Cryst Growth Des 6:1921–1926CrossRefGoogle Scholar
  31. Roy P, Srivastava SK (2007) Low-temperature synthesis of CuS nanorods by simple wet chemical method. Mater Lett 61:1693–1697CrossRefGoogle Scholar
  32. Sagade AA, Sharma R, Sulaniya I (2009) Enhancement in sensitivity of copper sulfide thin film ammonia gas sensor: effect of swift heavy ion irradiation. J Appl Phys 105:043701–043708CrossRefGoogle Scholar
  33. Sakamoto T, Sunamura H, Kawaura H, Hasegawa T, Nakayama T, Aono M (2003) Nanometer-scale switches usingcopper sulphide. Appl Phys Lett 82:3032–3034CrossRefGoogle Scholar
  34. Shen S, Zhang Y, Peng L, Xu B, Du Y, Deng M, Xu H, Wang Q (2011) Generalized synthesis of metal sulfide nanocrystals from single-source precursors: size, shape and chemical composition control and their properties. Cryst Eng Com 13:4572–4579CrossRefGoogle Scholar
  35. Sigman MB, Ghezelbash A, Hanrath T, Saunders AE, Lee F, Korgel BA (2003) Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets. J Am Chem Soc 125:16050–16057CrossRefGoogle Scholar
  36. Song Y-L, Li J-T, Bo Bai (2010) TiO2-assisted photodegradation of direct blue 78 in aqueous solution in sunlight. Water Air Soil Pollut 213:311–317CrossRefGoogle Scholar
  37. Thongtem T, Phuruangrat A, Thongtem S (2009) Formation of CuS with flower-like, hollow spherical, and tubular structures using the solvothermal-microwave process. Curr Appl Phys 9:195–200CrossRefGoogle Scholar
  38. Wang S (2008) A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes Pigm 76(3):714–720CrossRefGoogle Scholar
  39. Wang H, Zhang J, Zhao X, Xu S, Zhu JJ (2002) Preparation of copper monosulfide and nickel monosulfide nanoparticles by sonochemical method. J Mater Lett 55:253–258CrossRefGoogle Scholar
  40. Wu CY, Yu SH, Chen S, Liu GN, Liu BH (2006) Large scale synthesis of uniform CuS nanotubes in ethylene glycol by a sacrificial templating method under mild conditions. J Mater Chem 16:3326–3331CrossRefGoogle Scholar
  41. Wu Y, Wadia C, Ma W, Sadtler B, Alivisatos AP (2008) Synthesis and photovoltaic application of copper(I) sulfide nanocrystals. Nano Lett 8:2551–2555CrossRefGoogle Scholar
  42. Xie Y, Riedinger A, Prato M, Casu A, Genovese A, Guardia P, Sottini S, Sangregorio C, Miszta K, Ghosh S, Pellegrino T, Manna L (2013) Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions. J Am Chem Soc 135:17630–17637CrossRefGoogle Scholar
  43. Yan HJ, Wang WZ, Xu HL (2008) A micro-interface route to CuS superstructure composed of intersectional nanoplates. J Cryst Growth 310:2640–2643CrossRefGoogle Scholar
  44. Zhang S, Ning J, Zhao L, Liu B, Zou B (2010) Facile synthesis and assembly of CuS nano-flakes to novel hexagonal prism structures. J Cryst Growth 312:2060–2064CrossRefGoogle Scholar
  45. Zhao Y, Pan H, Lou Y, Qiu X, Zhu JJ, Burda C (2009) Plasmonic Cu2−xS nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides. J Am Chem Soc 131:4253–4261CrossRefGoogle Scholar
  46. Zhao L, Tao F, Quan Z, Zhou X, Yuan Y, Hu J (2012) Bubble template synthesis of copper sulfide hollow spheres and their applications in lithium ion battery. Mater Lett 68:28–31CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Gopinath Mondal
    • 1
    • 2
  • Ananyakumari Santra
    • 1
  • Pradip Bera
    • 1
  • Moumita Acharjya
    • 1
  • Sumanta Jana
    • 2
  • Dipankar Chattopadhyay
    • 3
  • Anup Mondal
    • 2
  • Sang Il Seok
    • 4
    • 5
  • Pulakesh Bera
    • 1
  1. 1.Post Graduate Department of Chemistry, Panskura Banamali CollegeVidyasagar UniversityMidnapore (E)India
  2. 2.Department of ChemistryIndian Institute of Engineering Science and Technology (IIEST)ShibpurIndia
  3. 3.Department of Polymer Science and TechnologyUniversity of CalcuttaKolkataIndia
  4. 4.KRICT-EPFL Global Research Laboratory, Division of Advanced MaterialsKorea Research Institute of Chemical TechnologyYuseong-GuSouth Korea
  5. 5.Department of Energy ScienceSungkyunkwan UniversitySuwonSouth Korea

Personalised recommendations