Advertisement

Gyroscopic behavior exhibited by the optical Kerr effect in bimetallic Au–Pt nanoparticles suspended in ethanol

  • D. Fernández-Valdés
  • C. Torres-Torres
  • C. L. Martínez-González
  • M. Trejo-Valdez
  • L. H. Hernández-Gómez
  • R. Torres-Martínez
Research Paper

Abstract

The modification in the third-order nonlinear optical response exhibited by rotating bimetallic Au–Pt nanoparticles in an ethanol solution was analyzed. The samples were prepared by a sol–gel processing route. The anisotropy associated to the elemental composition of the nanoparticles was confirmed by high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy measurements. The size of the nanoparticles varies in the range from 9 to 13 nm, with an average size of 11 nm. Changes in the spatial orientation of the nanomaterials automatically generated a variation in their plasmonic response evaluated by UV–Vis spectroscopy. A two-wave mixing experiment was conducted to explore an induced birefringence at 532 nm wavelength with nanosecond pulses interacting with the samples. A strong optical Kerr effect was identified to be the main responsible effect for the third-order nonlinear optical phenomenon exhibited by the nanoparticles. It was estimated that the rotation of inhomogeneous nanostructures can provide a remarkable change in the participation of different surface plasmon resonances, if they correspond to multimetallic nanoparticles. Potential applications for developing low-dimensional gyroscopic systems can be contemplated.

Keywords

Nonlinear optics Optical Kerr effect Two-wave mixing Bimetallic nanoparticles Colloids 

Graphical Abstract

Notes

Acknowledgments

The authors kindly acknowledge the financial support from Instituto Politécnico Nacional, Consejo Nacional de Ciencia y Tecnología, and Centro de Nanociencias y Micro-Nanotecnología del Instituto Politécnico Nacional.

Compliance with ethical standards

Conflict of interest

The authors declare no potential conflict of interest related to this work.

References

  1. Arash B, Jiang J-W, Rabczuk T (2015) A review on nanomechanical resonators and their applications in sensors and molecular transportation. Appl Phys Rev 2:021301CrossRefGoogle Scholar
  2. Armenise MN, Ciminelli C, Dell’Olio F, Passaro VMN (2011) Advances in gyroscope technologies. Springer, BerlinCrossRefGoogle Scholar
  3. Bansal A, Sekhon JS, Verma SS (2015) Dimensional and compositional dependent analysis of plasmonic bimetallic nanorods. J Mod Opt 62:1665–1673CrossRefGoogle Scholar
  4. Bosse JL, Lee S, Andersen AS, Sutherland DS, Huey BD (2014) High speed friction microscopy and nanoscale friction coefficient mapping. Meas Sci Technol 25:115401CrossRefGoogle Scholar
  5. Boyd RW (1992) Nonlinear optics. Academic Press, San DiegoGoogle Scholar
  6. Can-Uc B, Rangel-Rojo R, Rodriguez-Fernandez L, Oliver A (2013) Polarization selectable nonlinearities in elongated silver nanoparticles embedded in silica. Opt Mater Express 3:2012–2021CrossRefGoogle Scholar
  7. Carrillo-Delgado C, Torres-Torres D, Trejo-Valdez M, Rebollo NR, Hernández-Gómez LH, Torres-Torres C (2015) Bidirectional optical Kerr transmittance in a bilayer nanocomposite with Au nanoparticles and carbon nanotubes. Phys Scr 90:085804CrossRefGoogle Scholar
  8. Cesca T, Calvelli P, Battaglin G, Mazzoldi P, Mattei G (2012a) Local-field enhancement effect on the nonlinear optical response of gold-silver nanoplanets. Opt Express 20:4538–4547Google Scholar
  9. Cesca T, Calvelli P, Battaglin G, Mazzoldi P, Mattei G (2012b) Nonlinear optical response of gold–silver nanoplanets. Radiat Eff Defects Solids 167:1–7CrossRefGoogle Scholar
  10. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209CrossRefGoogle Scholar
  11. Garcia-Gutierrez DI, Gutierrez-Wing CE, Giovanetti L, Ramallo-López JM, Requejo FG, Jose-Yacaman M (2005) Temperature effect on the synthesis of Au–Pt bimetallic nanoparticles. J Phys Chem B 109:3813–3821CrossRefGoogle Scholar
  12. Guo D, Xie G, Luo J (2014) Mechanical properties of nanoparticles: basics and applications. J Phys D 47:013001CrossRefGoogle Scholar
  13. Iordanova I, Antonov V, Gurkovsky S (2002) Changes of microestructure and chemical properties of cold-rolled low carbon steel due to its surface treatmentr by Nd: glass pulsed laser. Surf Coat Technol 153:267–275CrossRefGoogle Scholar
  14. Kim KH, Husakou A, Herrmann J (2010) Linear and nonlinear optical characteristics of composites containing metal nanoparticles with different sizes and shapes. Opt Express 18:7488–7496CrossRefGoogle Scholar
  15. Krause A, Winger M, Blasius TD, Lin Q, Painter O (2012) A high-resolution microchip optomechanical accelerometer. Nat Photonics 6:768–772CrossRefGoogle Scholar
  16. Krug BG, Asumadu JA (2015) Magnetic nanoparticle-based gyroscopic sensor: a review. IEEE Sens J 15:4174–4177CrossRefGoogle Scholar
  17. Krug B, Asumadu J (2016) Orientation and inertia sensory feedback feasibility using spinning magnetic nanoparticles. In: IEEE international symposium on inertial sensors and systems, pp 93–96Google Scholar
  18. Kuznetsov AG, Molchanov AV, Chirkin MV, Izmailov EA (2015) Precise laser gyroscope for autonomous inertial navigation. Quantum Electron 45:78–88CrossRefGoogle Scholar
  19. Liu Y, Cui X, Zang J, Zhang Z, Wang Y, Li Y, Liu J, Xue C (2015) Systematically analysis of resonant fiber optic gyroscope. Optik 126:3420–3423CrossRefGoogle Scholar
  20. Ma P, Gao D, Ni Y, Gao L (2016) Enhancement of optical nonlinearity by core-shell bimetallic nanostructures. Plasmonics 11:183–187CrossRefGoogle Scholar
  21. Morales-Bonilla S, Torres-Torres C, Trejo-Valdez M, Torres-Torres D, Urriolagoitia-Calderón G (2015) Mechano-optical transmittance and third order nonlinear optical properties exhibited by Au nanoparticles. Optik 126:4093–4097CrossRefGoogle Scholar
  22. Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111:3606–3619CrossRefGoogle Scholar
  23. Oh H, Ki Jung L, Keekeun Y, Sang Sik L (2015) Gyroscopes based on surface acoustic waves. Micro Nano Syst Lett 3:1–10CrossRefGoogle Scholar
  24. Pasciuto I, Ligorio G, Bergamini E, Vannozzi G, Sabatini AM, Cappozzo A (2015) How angular velocity features and different gyroscope noise types interact and determine orientation estimation accuracy. Sensors 15:23983–24001CrossRefGoogle Scholar
  25. Patton ST, Slocik JM, Campbell A, Hu J, Naik RR, Voevodin AA (2008) Bimetallic nanoparticles for surface modification and lubrication of MEMS switch contacts. Nanotechnology 19:405705CrossRefGoogle Scholar
  26. Prodan E, Radloff C, Halas NJ, Nordlander P (2013) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422CrossRefGoogle Scholar
  27. Sheik-Bahae M, Said AA, Wei T, Hagan DJ, Stryland EWV (1990) Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quantum Electron 26:760–769CrossRefGoogle Scholar
  28. Shkel AM, Acar C, Painter C (2005) Two types of micromachined vibratory gyroscopes. IEEE sens 1:531–536Google Scholar
  29. Smeenk CTL, Corkum PB (2013) Molecular alignment using circularly polarized laser pulses. J Phys B 46:201001CrossRefGoogle Scholar
  30. Stepanov AL (2011) Nonlinear optical properties of implanted metal nanoparticles in various transparent matrixes: a review. Rev Adv Mater Sci 27:115–145Google Scholar
  31. Tamayo J, Kosaka PM, Ruz JJ, San Paulo A, Calleja M (2013) Biosensors based on nanomechanical systems. Chem Soc Rev 42:1287–1311CrossRefGoogle Scholar
  32. Tang Q, Wang X, Yang Q (2016) Scale factor model analysis of MEMS gyroscopes. Microsyst Technol 1:1–5CrossRefGoogle Scholar
  33. Torres-Torres C, Trejo-Valdez M, Sobral H, Santiago-Jacinto P, Reyes-Esqueda JA (2009) Stimulated emission and optical third order nonlinearity in Li-doped ZnO nanorods. J Phys Chem C 113:13515–13521CrossRefGoogle Scholar
  34. Trejo-Valdez M, Sobral H, Martínez-Gutierrez H, Torres-Torres C (2016) Study of the electrical and nanosecond third order nonlinear optical properties of ZnO films doped with Au and Pt nanoparticles. Thin Solid Films 605:84–88CrossRefGoogle Scholar
  35. Yang C, Li H (2015) Digital control system for the MEMS tuning fork gyroscope based on synchronous integral demodulator. IEEE Sens J 15:5755–5764CrossRefGoogle Scholar
  36. Yu X, He J, Wang D, Hu Y, Tian H, Dong T, He Z (2012) Au–Pt bimetallic nanoparticles supported on nest-like MnO2: synthesis and application in HCHO decomposition. J Nanopart Res 14:1260CrossRefGoogle Scholar
  37. Zhang S, Nguyen L, Liang J-X, Shan J, Liu J, Frenkel AI, Patlolla A, Huang W, Li J, Tao F (2015) Catalysis on singly dispersed bimetallic sites. Nat Commun 6:7938CrossRefGoogle Scholar
  38. Zhu J (2005) Theoretical study of the optical absorption properties of Au–Ag bimetallic nanospheres. Physica E 27:296–301CrossRefGoogle Scholar
  39. Zoric I, Zach M, Kasemo B, Langhammer C (2011) Gold, platinum, and aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms. ACS Nano 5:2535–2546CrossRefGoogle Scholar
  40. Zynio SA, Samoylov AV, Surovtseva ER, Mirsky VM, Shirshov YM (2002) Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance. Sensors 2:62–70CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • D. Fernández-Valdés
    • 1
  • C. Torres-Torres
    • 1
  • C. L. Martínez-González
    • 1
  • M. Trejo-Valdez
    • 2
  • L. H. Hernández-Gómez
    • 1
  • R. Torres-Martínez
    • 3
  1. 1.Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad ZacatencoInstituto Politécnico NacionalMexicoMexico
  2. 2.Escuela Superior de Ingeniería Química e Industrias ExtractivasInstituto Politécnico NacionalMexicoMexico
  3. 3.Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Unidad QuerétaroInstituto Politécnico NacionalSantiago de QuerétaroMexico

Personalised recommendations