Advertisement

Fabrication of fluorographene nanosheets with high yield and good quality based on supercritical fluid-phase exfoliation

  • Qi Chen
  • Yan Ji
  • Danying Zhang
  • Jia Shi
  • Yinghong Xiao
  • Jianfei Che
Research Paper
  • 322 Downloads

Abstract

This article presents a novel and simple method of supercritical fluid-phase exfoliation to fabricate fluorographene (FG) nanosheets with high yield and good quality. After soaking with supercritical CO2 and glycol at 10 MPa and 50 °C for 24 h, fluoride graphite powder was exfoliated by the intercalated CO2 and glycol molecules during an abrupt depressurization step. Here, supercritical CO2 acted as a penetrant and glycol acted as a “molecular wedge” to exfoliate fluoride graphite very well. The properties of FG nanosheets were detected by TEM, AFM, UV spectra, FTIR, XPS, Raman spectra, and XRD, which show the possibility of producing thickness-controlled FG nanosheets by varying numbers of supercritical CO2 process and the high yield of pure FG nanosheets of 32 wt%, four times higher than that of the sample treated only by the traditional method of sonication. Its simplicity, high productivity, low cost, and short processing time make this technique suitable for large-scale manufacturing of FG nanosheets.

Keywords

Fluorographene Supercritical CO2 Exfoliation High productivity and low cost Two-dimensional materials 

Notes

Acknowledgments

This work was supported by Specialized Research Fund for the Doctoral Program of Higher Education of China (20123219110010) and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

References

  1. Bourlinos AB, Safarova K, Siskova K, Zboril R (2010) The production of chemically converted graphenes from graphite fluoride. Carbon 50(3):1422–1444Google Scholar
  2. Bulusheva LG, Fedoseeva YV, Okotrub AV, Flahaut E, Asanov IP, Koroteev VO, Yaya A, Ewels CP, Chuvilin AL, FeltenA Lier GV, Vyalikh DV (2010) Stability of fluorinated double-walled carbon nanotubes produced by different fluorination techniques. J Chem Mat 22(14):4197–4203. doi: 10.1021/cm100677c CrossRefGoogle Scholar
  3. Chang HX, Cheng JS, Liu XQ, Gao JF, Li MJ, Li JH, Tao XM, Ding F, Zheng ZJ (2011) Facile synthesis of wide-bandgap fluorinated graphene semiconductors. Chem Eur J 17:8896–8903. doi: 10.1002/chem.201100699 CrossRefGoogle Scholar
  4. Chantharasupawong P, Philip R, Narayanan NT, Sudeep PM, Mathkar A, Ajayan PM, Thomas J (2012) Optical power limiting in fluorinated graphene oxide: an insight into the nonlinear optical properties. J Phys Chem C 116(49):25955–25961CrossRefGoogle Scholar
  5. FedorovVE GrayferED, MakotchenkoVG Nazarov AS, Shin HJ, Choi JY (2012) Highly exfoliated graphite fluoride as a precursor for graphene fluoride dispersions and films. J Croat Chem Acta 85(1):107–112. doi: 10.5562/cca1972 CrossRefGoogle Scholar
  6. Gao YH, Shi W, Wang WC, Wang Y, Zhao YP, Lei ZH, Miao RR (2014) Ultrasonic-assisted production of graphene with high yield in supercritical CO2 and its high electrical conductivity film. Ind Eng Chem Res 53:2839–2845. doi: 10.1021/ie402889s CrossRefGoogle Scholar
  7. Gong PW, Wang ZF, Wang JQ, Wang HG, Li ZP, Fan ZJ, Xu Y, Han XX, Yang SR (2012) One-pot sonochemical preparation of fluorographene and selective tuning of its fluorine coverage. J Mater Chem 22:16950–16956CrossRefGoogle Scholar
  8. Grayfer ED, Makotchenko VG, Kibis LS, Boronin AI, Pazhetnov EM, Zaikovskii VI, Fedorov VE (2013) Synthesis, properties, and dispersion of few-layer graphene fluoride. J Chem Asian 8(9):2015–2022. doi: 10.1002/asia.201300401 CrossRefGoogle Scholar
  9. Hong X, Cheng SH, Herding C, Zhu J (2011) Colossal negative magnetoresistance in dilute fluorinated grapheme. Phys Rev B 83(8):085410. doi: 10.1103/PhysRevB.83.085410 CrossRefGoogle Scholar
  10. Horsch S, Serhatkulu G, Gulari E, Kannan RM (2006) Supercritical CO2 dispersion of nano-clays and clay/polymer nanocomposites. Polymer 47:7485–7496CrossRefGoogle Scholar
  11. Huang WX, Pei QX, Liu ZS, Zhang YW (2012) Thermal conductivity of fluorinated graphene: a non-equilibrium molecular dynamics study. Chem Phys Lett 552(12):97–101CrossRefGoogle Scholar
  12. Jeon KJ, Lee Z, Pollak E, Moreschini L, Bostwick A, Park CM, Mendelsberg R, Radmilovic V, Kostecki R, Richardson TJ, Rotenberg E (2011) Fluorographene: a wide bandgap semiconductor with ultraviolet luminescence. ACS Nano 5(2):1042–1046CrossRefGoogle Scholar
  13. Karlický F, Datta KKR, Otyepka M, Zbořil R (2013) Halogenated graphenes rapidly growing family of graphene derivatives. ACS Nano 7(8):6434–6464CrossRefGoogle Scholar
  14. Lavrik OL, Busygina TV, Shaburova NN, Zibareva IV (2015) Nanoscience and nanotechnology in the Siberian branch of the Russian Academy of Sciences: bibliometric analysis and evaluation. J Nanopart Res 17:90CrossRefGoogle Scholar
  15. Lee WH, Suk JW, Chou H, Lee J, Hao YF, Wu YP, Piner R, Akinwande D, Kim KS, Ruoff RS (2012) Selective-area fluorination of graphene with fluoropolymer and laser irradiation. J Nano Lett 12(5):2374–2378. doi: 10.1021/nl300346j CrossRefGoogle Scholar
  16. Li JB, Xu Q, Peng Q, Pang MZ, He SQ, Zhu CS (2006) Supercritical CO2-assisted synthesis of polystyrene/clay nanocomposites via in situ intercalative polymerization. J Appl Polym Sci 100(1):671–676. doi: 10.1002/app.23395 CrossRefGoogle Scholar
  17. Li LH, Zheng XL, Wang JJ, Sun Q, Xu Q (2013) Solvent-exfoliated and functionalized graphene with assistance of supercritical carbon dioxide. ACS Sustainable Chem Eng 1:144–151. doi: 10.1021/sc3000724 Google Scholar
  18. Liu CQ, Hu GX (2014) Effect of nitric acid treatment on the preparation of graphene sheets by supercritical N, N-dimethylformamide exfoliation. Ind Eng Chem Res 53:14310–14314. doi: 10.1021/ie5019707 CrossRefGoogle Scholar
  19. Liu L, Zhang M, Xiong ZT, Hu DQ, Wu GT, Chen P (2015) Ammonia borane assisted solid exfoliation of graphite fluoride for facile preparation of fluorinated graphene nanosheets. Carbon 81:702–709. doi: 10.1016/j.carbon.2014.10.008 CrossRefGoogle Scholar
  20. Longo S, Mauro M, Daniel C, Galimberti M, Guerra G (2013) Clay exfoliation and polymer/clay aerogels by supercritical carbon dioxide. Front Chem. doi:  10.3389/fchem.2013.00028
  21. Makharza S, Cirillo G, Bachmatiuk A, Ibrahim I, Ioannides N, Trzebicka B, Hampel S, Ru¨mmeli MH (2013) Graphene oxide-based drug delivery vehicles: functionalization, characterization, and cytotoxicity evaluation. J Nanopart Res 15:2099CrossRefGoogle Scholar
  22. Manke CW, Gulari E, Mielewski DF, Lee EC (2002) To produce particulates for uses including producing a reinforced polymer having improved mechanical properties. US Patent 6,469,073 Oct 2002Google Scholar
  23. Mathkar A, Narayanan TN, Alemany LB, Cox P, Nguyen P, Gao G, Chang P, Romero-Aburto RPM, Ajayan Mani SA (2013) Synthesis of fluorinated graphene oxide and its amphiphobic properties. Part Part Syst Charact 30:266–272CrossRefGoogle Scholar
  24. Mielewski DF, Lee EC, Manke CW, Gulari E (2004) System and method of preparing a reinforced polymer by supercritical fluid treatment. US Patent 6,753,360 Jun 2004Google Scholar
  25. Nair RR, Ren WC, Jalil R, Riaz I, Kravets VG, Britnell L, Blake P, Schedin F, Mayorov AS, Yuan SJ, Katsnelson MI, Cheng HM, Strupinski W, Bulusheva LG, Okotrub AV, Grigorieva IV, Grigorenko AN, Novoselov KS, Geim AK (2010) Fluorographene: a two-dimensional counterpart of teflon. Small 24:2877–2884. doi: 10.1002/smll.201001555 CrossRefGoogle Scholar
  26. Nethravathi C, Rajamathi M (2008) Chemically modified grapheme sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46:1994–1998CrossRefGoogle Scholar
  27. Pinakov DV, Logvinenko VA, Shubin YV, Chekhova GN (2007) The relationship between properties of fluorinated graphite intercalates and matrix composition. J Therm Anal Calorim 90:399–405CrossRefGoogle Scholar
  28. Pu NW, Wang CA, Sung Y, Liu YM, Ger MD (2009) Production of few-layer graphene by supercritical CO2 exfoliation of graphite. Mater Lett 63:1987–1989. doi: 10.1016/j.matlet.2009.06.031 CrossRefGoogle Scholar
  29. Rangappa D, Sone K, Wang M, Gautam UK, Golberg D, Itoh H, Ichihara M, Honma I (2010) Rapid and direct conversion of graphite crystals into high-yielding, good-quality graphene by supercritical fluid exfoliation. Chem Eur J 6:6488–6494CrossRefGoogle Scholar
  30. Robinson JT, Burgess JS, Junkermeier CE, Badescu SC, Reinecke TL, Perkins FK, Zalalutdniov MK, Baldwin JW, Culbertson JC, Sheehan PE, Snow ES (2010) Properties of fluorinated graphene films. Nano Lett 10(8):3001–3005. doi: 10.1021/nl101437p CrossRefGoogle Scholar
  31. Romero-Aburto R, Narayanan TN, Nagaoka Y, Hasumura T, Mitcham TM, Fukuda T, Cox PJ, Bouchard RR, Maekawa T, Kumar DS, Torti SV, Mani SA, Ajayan PM (2013) Fluorinated graphene oxide: a new multimodal material for biological applications. Adv Mater 25:5632–5637CrossRefGoogle Scholar
  32. Rüdorff W, Rüdorff G (1947) Über den katalytischen Einfluß von Flußsäure auf die Bildung von Kohlenstoffmonofluorid. Chem Ber 80(5):413–417. doi: 10.1002/cber.19470800508 CrossRefGoogle Scholar
  33. Serhatkulu GK, Dilek C, Gulari E (2006) Supercritical CO2 intercalation of layered silicates. J Supercrit Fluids 39:264–270. doi: 10.1016/j.supflu.2006.07.028 CrossRefGoogle Scholar
  34. Sim HS, Kim TA, Lee KH, Park M (2012) Preparation of graphene nanosheets through repeated supercritical carbon dioxide process. Mater Lett 89:343–346CrossRefGoogle Scholar
  35. Tadi KK, Pal S, Narayanan TN (2016) Fluorographene based ultrasensitive ammonia sensor. Sci Rep 6:25221CrossRefGoogle Scholar
  36. Tomai T, Tamura N, Honma I (2013) One-Step production of anisotropically etched graphene using supercritical water. ACS Macro Lett 2:794–798. doi: 10.1021/mz400186t CrossRefGoogle Scholar
  37. Wang Y, Lee WC, Manga KK, Ang PK, Lu J, Liu YP, Lim CT, Loh KP (2012a) Fluorinated graphene for promoting neuro-induction of stem cells. Adv Mater 24(31):4285–4290. doi: 10.1002/adma.201200846 CrossRefGoogle Scholar
  38. Wang ZF, Wang JQ, Liu XH, Li ZP, Gong PW, Zhang LB, Ren JF, Wang HG, Yang SR (2012b) Synthesis of fluorinated graphene with tunable degree of fluorination. Carbon 50(15):5403–5410. doi: 10.1016/j.carbon.2012.07.026 CrossRefGoogle Scholar
  39. Wang ZF, Wang JQ, Li ZP, Gong PW, Ren JF, Wang HG, Han XX, Yang SR (2012c) Cooperatively exfoliated fluorinated graphene with full-color emission. RSC Adv 2:11681–11686. doi: 10.1039/C2RA21871B CrossRefGoogle Scholar
  40. Wang X, Dai YY, Gao J, Huang JY, Li BY, Fan C, Yang J, Liu XY (2013) High-yield production of highly fluorinated graphene by direct heating fluorination of graphene-oxide. JACS Appl Mater Interfaces 5(17):8294–8299CrossRefGoogle Scholar
  41. Wheeler V, Garces N, Nyakiti L, Myers-Ward R, Jernigan G, Culbertson J, JrC Eddy, Gaskill DK (2012) Fluorine functionalization of epitaxial graphene for uniform deposition of thin high-κ dielectrics. Carbon 50(6):2307–2314. doi: 10.1016/j.carbon.2012.01.050 CrossRefGoogle Scholar
  42. Withers F, Dubois M, Savchenko AK (2010) Electron properties of fluorinated single-layer graphene transistors. Phys Rev B 82:073403CrossRefGoogle Scholar
  43. Wu B, Yang XN (2011) A molecular simulation of interactions between graphene nanosheets and supercritical CO2. J Colloid Interface Sci 361:1–8CrossRefGoogle Scholar
  44. Yang Y, Lu GL, Li YJ, Liu ZZ, Huang XY (2013) One-step preparation of fluorographene: a highly efficient, low-cost, and largescale approach of exfoliating fluorographite. J ACS Appl Mater Interfaces 5(24):13478–13483CrossRefGoogle Scholar
  45. Zboril R, Karlicky F, Bourlinos AB, Steriotis TA, Stubos AK, Georgakilas V, Safarova K, Jancik D, Trapalis C, Otyepka M (2010) Graphene fluoride: a stable stoichiometric graphene derivative and its chemical conversion to graphene. Small 24:2885–2891. doi: 10.1002/smll.201001401 CrossRefGoogle Scholar
  46. Zhang M, Ma YC, Zhu YY, Che JF, Xiao YH (2013) Two-dimensional transparent hydrophobic coating based on liquid-phase exfoliated graphene fluoride. Carbon 63:149–156. doi: 10.1016/j.carbon.2013.06.066 CrossRefGoogle Scholar
  47. Zheng XL, Xu Q, Li JB, Li LH, Wei JY (2012) High-throughput, direct exfoliation of graphite to graphene via cooperation of supercritical CO2 and pyrene-polymers. RSC Adv 2:10632–10638. doi: 10.1039/c2ra21316h CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Key Laboratory of Soft Chemistry and Functional Materials, College of Chemical EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China
  2. 2.Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials ScienceNanjing Normal UniversityNanjingPeople’s Republic of China

Personalised recommendations