Synthesis of ZnO@γ-Fe2O3 core–shell nanocomposites by a facile thermal decomposition approach and their application in photocatalytic degradation of congo red

  • Sudheer Kumar Yadav
  • P. Jeevanandam
Research Paper


ZnO@γ-Fe2O3 core–shell nanocomposites were synthesized by a facile thermal decomposition approach. ZnO nanorods were first synthesized by calcination of zinc acetate at 300 °C, in air. γ-Fe2O3 nanoparticles were then deposited on the surface of ZnO nanorods by the thermal decomposition of iron acetylacetonate at 200 °C in diphenyl ether. The structure, composition, optical and magnetic properties of the nanocomposites were studied using an array of techniques. XRD results suggest the presence of γ-Fe2O3 nanoparticles and ZnO, and FE-SEM images indicate formation of shell of iron oxide on the ZnO nanorods. Transmission electron microscopy studies clearly show that ZnO possesses rod morphology (length = 1.1 ± 0.1 μm, diameter = 40.1 ± 7 nm) and TEM images of the ZnO@γ-Fe2O3 nanocomposites show uniform shell of γ-Fe2O3 coated on the ZnO nanorods and thickness of the γ-Fe2O3 shell varies from 10 to 20 nm. Diffuse reflectance spectra of ZnO@γ-Fe2O3 nanocomposites reveal extended optical absorption in the visible range (400–600 nm) and photoluminescence spectra indicate that the ZnO@γ-Fe2O3 nanocomposites exhibit enhanced defect emission. The ZnO@γ-Fe2O3 core–shell nanocomposites show superparamagnetic behaviour at room temperature. The core–shell nanocomposites exhibit enhanced visible-light driven photocatalytic degradation of congo red in an aqueous solution as compared to pure ZnO nanorods and γ-Fe2O3 nanoparticles. The enhanced photocatalytic activity is attributed to good visible-light absorption and effective charge separation at the interface of ZnO@γ-Fe2O3 core–shell nanocomposites.


ZnO@γ-Fe2O3 core–shell nanocomposites Thermal decomposition Photocatalytic degradation 



P. J thanks the Council of Scientific and Industrial Research (CSIR), New Delhi for the financial support (Project No. 01(2726)/13/EMR-II). The award of Research Fellowship to Mr. Sudheer Kumar Yadav by the University Grants Commission, Government of India, is gratefully acknowledged. The authors are also thankful to the Institute Instrumentation Centre, Indian Institute of Technology Roorkee for providing the facilities.

Supplementary material

11051_2016_3502_MOESM1_ESM.docx (2.1 mb)
Supplementary material 1 (DOCX 2167 kb)


  1. Abdullah Mirzaie R, Kamrani F, Anaraki Firooz A, Khodadadi AA (2012) Effect of α-Fe2O3 addition on the morphological, optical and decolorization properties of ZnO nanostructures. Mater Chem Phys 133:311–316. doi: 10.1016/j.matchemphys.2012.01.029 CrossRefGoogle Scholar
  2. Amin N, Arajs S (1987) Morin temperature of annealed submicronic α-Fe2O3 particles. Phys Rev B 35(10):4810–4811. doi: 10.1017/CBO9781107415324.004 CrossRefGoogle Scholar
  3. Apte SK, Naik SD, Sonawane RS, Kale BB, Baeg JO (2007) Synthesis of nanosize-necked structure α- and γ-Fe2O3 and its photocatalytic activity. J Am Ceram Soc 90(2):412–414. doi: 10.1111/j.1551-2916.2006.01424.x CrossRefGoogle Scholar
  4. Ayyappan S, Gnanaprakash G, Panneerselvam G, Antony MP, Philip J (2008) Effect of surfactant monolayer on reduction of Fe3O4 nanoparticles under vacuum. J Phys Chem C 112(47):18376–18383. doi: 10.1021/jp8052899 CrossRefGoogle Scholar
  5. Azizi K, Heydari A (2014) Vitamin B1 supported on silica-encapsulated γ-Fe2O3 nanoparticles: design, characterization and application as a greener biocatalyst for highly efficient acylation. RSC Adv 4(17):8812–8816. doi: 10.1039/c3ra46437g CrossRefGoogle Scholar
  6. Balti I, Smiri LS, Rabu P, Gautron E, Viana B, Jouini N (2014) Synthesis and characterization of rod-like ZnO decorated with γ-Fe2O3 nanoparticles monolayer. J Alloys Compd 586:S476–S482. doi: 10.1016/j.jallcom.2013.02.118 CrossRefGoogle Scholar
  7. Bødker F, Hansen MF, Koch CB, Lefmann K, Mørup S (2000) Magnetic properties of hematite nanoparticles. Phys Rev B 61(10):6826–6838. doi: 10.1103/PhysRevB.61.6826 CrossRefGoogle Scholar
  8. Chandraiahgari CR, De Bellis G, Ballirano P, Balijepalli SK, Kaciulis S, Caneve L, Sarto F, Sarto MS (2015) Synthesis and characterization of ZnO nanorods with a narrow size distribution. RSC Adv 5(62):49861–49870. doi: 10.1039/C5RA02631H CrossRefGoogle Scholar
  9. Chen D, Xu R (1998) Hydrothermal synthesis and characterization of nanocrystalline γ-Fe2O3 particles. J Solid State Chem 137(9):185–190. doi: 10.1006/jssc.1997.7631 CrossRefGoogle Scholar
  10. Chen C, Ma W, Zhao J (2010a) Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem Soc Rev 39(11):4206–4219. doi: 10.1039/b921692h CrossRefGoogle Scholar
  11. Chen YJ, Zhang F, Zhao GG, Fang XY, Jin HB, Gao P, Zhu CL, Cao MS, Xiao G (2010b) Synthesis, multi-nonlinear dielectric resonance, and excellent electromagnetic absorption characteristics of Fe3O4/ZnO core/shell nanorods. J Phys Chem C 114(20):9239–9244. doi: 10.1021/jp912178q CrossRefGoogle Scholar
  12. Chu XY, Hong X, Zhang XT, Zou P, Liu YC (2008) Heterostructures of ZnO microrods coated with iron oxide nanoparticles. J Phys Chem C 112(41):15980–15984. doi: 10.1021/jp804590y CrossRefGoogle Scholar
  13. Farbod M, Kajbafvala M (2013) Effect of nanoparticle surface modification on the adsorption-enhanced photocatalysis of Gd/TiO2 nanocomposite. Powder Technol 239:434–440. doi: 10.1016/j.powtec.2013.02.027 CrossRefGoogle Scholar
  14. Fu R, Wang W, Han R, Chen K (2008) Preparation and characterization of γ-Fe2O3/ZnO composite particles. Mater Lett 62(25):4066–4068. doi: 10.1016/j.matlet.2008.05.006 CrossRefGoogle Scholar
  15. Guo N, Liang Y, Lan S, Liu L, Zhang J, Ji G, Gan S (2014) Microscale hierarchical three-dimensional flowerlike TiO2/PANI composite: synthesis, characterization, and its remarkable photocatalytic activity on organic dyes under UV-light and sunlight irradiation. J Phys Chem C 118(32):18343–18355. doi: 10.1021/jp5044927 CrossRefGoogle Scholar
  16. Guskos N, Glenis S, Zolnierkiewicz G, Typek J, Sibera D, Kaszewski J, Moszyński D, Łojkowski W, Narkiewicz U (2010) Magnetic study of Fe2O3/ZnO nanocomposites. Phys B Condens Matter 405(18):4054–4058. doi: 10.1016/j.physb.2010.06.055 CrossRefGoogle Scholar
  17. Hernández A, Maya L, Sánchez-Mora E, Sánchez EM (2007) Sol–gel synthesis, characterization and photocatalytic activity of mixed oxide ZnO-Fe2O3. J Sol-Gel Sci Technol 42(1):71–78. doi: 10.1007/s10971-006-1521-7 CrossRefGoogle Scholar
  18. Hsu YK, Chen YC, Lin YG (2015) Novel ZnO/Fe2O3 core–shell nanowires for photoelectrochemical water splitting. ACS Appl Mater Interfaces 7(25):14157–14162. doi: 10.1021/acsami.5b03921 CrossRefGoogle Scholar
  19. Jayanthi SA, Nathan DMGT, Jayashainy J, Sagayaraj P (2015) A novel hydrothermal approach for synthesizing α-Fe2O3, γ-Fe2O3 and Fe3O4 mesoporous magnetic nanoparticles. Mater Chem Phys 162:316–325. doi: 10.1016/j.matchemphys.2015.05.073 CrossRefGoogle Scholar
  20. Jiang R, Yao J, Zhu H, Fu Y, Guan Y, Xiao L, Zeng G (2014) Effective decolorization of congo red in aqueous solution by adsorption and photocatalysis using novel magnetic alginate/γ-Fe2O3/CdS nanocomposite. Desalin Water Treat 52(1–3):238–247. doi: 10.1080/19443994.2013.787551 CrossRefGoogle Scholar
  21. Kaneti YV, Zakaria QMD, Zhang Z, Chen C, Yue J, Liu M, Jiang X, Yu A (2014) Solvothermal synthesis of ZnO-decorated α-Fe2O3 nanorods with highly enhanced gas-sensing performance toward n-butanol. J Mater Chem A 2:13283–13292. doi: 10.1039/C4TA01837K CrossRefGoogle Scholar
  22. Kishore PNR, Jeevanadam P (2011) Synthesis of silver–iron oxide nanocomposites by thermal decomposition. J Nanosci Nanotechnol 11(4):3445–3453. doi: 10.1166/jnn.2011.3748 CrossRefGoogle Scholar
  23. Kishore PNR, Jeevanandam P (2012) A novel thermal decomposition approach for the synthesis of silica-iron oxide core-shell nanoparticles. J. Alloys Compd 522(1):51–62. doi: 10.1016/j.jallcom.2012.01.076 CrossRefGoogle Scholar
  24. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B Environ 49(1):1–14. doi: 10.1016/j.apcatb.2003.11.010 CrossRefGoogle Scholar
  25. Kumar SG, Rao KSRK (2015) Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv 5(5):3306–3351. doi: 10.1039/C4RA13299H CrossRefGoogle Scholar
  26. Kumar S, Surendar T, Baruah A, Shanker V (2013) Synthesis of a novel and stable g-C3N4–Ag3PO4 hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation. J. Mater. Chem. A 1(17):5333–5340. doi: 10.1039/c3ta00186e CrossRefGoogle Scholar
  27. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110. doi: 10.1021/Cr068445e CrossRefGoogle Scholar
  28. Lee YJ, Jun KW, Park JY, Potdar HS, Chikate RC (2008) A simple chemical route for the synthesis of γ-Fe2O3 nano-particles dispersed in organic solvents via an iron–hydroxy oleate precursor. J Ind Eng Chem 14(1):38–44. doi: 10.1016/j.jiec.2007.08.009 CrossRefGoogle Scholar
  29. Li X, Lin H, Chen X, Niu H, Zhang T, Liu J, Qu F (2015) Fabrication of TiO2/porous carbon nanofibers with superior visible photocatalytic activity. New J Chem 39(10):7863–7872. doi: 10.1039/C5NJ01189B CrossRefGoogle Scholar
  30. Lin CR, Chu YM, Wang SC (2006) Magnetic properties of magnetite nanoparticles prepared by mechanochemical reaction. Mater Lett 60(4):447–450. doi: 10.1016/j.matlet.2005.09.009 CrossRefGoogle Scholar
  31. Lin ST, Thirumavalavan M, Jiang TY, Lee JF (2014) Synthesis of ZnO/Zn nano photocatalyst using modified polysaccharides for photodegradation of dyes. Carbohydr Polym 105(1):1–9. doi: 10.1016/j.carbpol.2014.01.017 CrossRefGoogle Scholar
  32. Liu S, Ma C (2015) Synthesis and characterization of flower-like NiCoP/ZnO composites. New J Chem 39(8):6332–6337. doi: 10.1039/C5NJ00992H CrossRefGoogle Scholar
  33. Liu Y, Yu L, Hu Y, Guo C, Zhang F, Lou XW (2012) A magnetically separable photocatalyst based on nest-like γ-Fe2O3/ZnO double-shelled hollow structures with enhanced photocatalytic activity. Nanoscale 4(1):183–187. doi: 10.1039/c1nr11114k CrossRefGoogle Scholar
  34. Liu X, Li W, Chen N, Xing X, Dong C, Wang Y (2015a) Ag–ZnO heterostructure nanoparticles with plasmon-enhanced catalytic degradation for Congo red under visible light. RSC Adv 5(43):34456–34465. doi: 10.1039/C5RA03143E CrossRefGoogle Scholar
  35. Liu Y, Sun L, Wu J, Fang T, Cai R, Wei A (2015b) Preparation and photocatalytic activity of ZnO/Fe2O3 nanotube composites. Mater Sci Eng B 194:9–13. doi: 10.1016/j.mseb.2014.12.021 CrossRefGoogle Scholar
  36. Ma J, Wang K, Zhan M (2015) Growth mechanism and electrical and magnetic properties of Ag–Fe3O4 core–shell nanowires. ACS Appl Mater Interfaces 7(29):16027–16039. doi: 10.1021/acsami.5b04342 CrossRefGoogle Scholar
  37. Maiti D, Mukhopadhyay S, Chandra Mohanta S, Saha A, Sujatha Devi P (2015) A multifunctional nanocomposite of magnetic γ-Fe2O3 and mesoporous fluorescent ZnO. J Alloys Compd 653(1):187–194. doi: 10.1016/j.jallcom.2015.08.230 CrossRefGoogle Scholar
  38. Maity D, Agrawal DC (2007) Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J Magn Magn Mater 308(1):46–55. doi: 10.1016/j.jmmm.2006.05.001 CrossRefGoogle Scholar
  39. Mashlan M, Zboril R, Machala L, Vujtek M, Walla J, Nomura K (2004) Mössbauer spectroscopy in study of thermally induced crystallization of amorphous Fe2O3 nanoparticles. J Metastab Nanocryst Mater 20–21:641–647. doi: 10.4028/ CrossRefGoogle Scholar
  40. Maya-Treviño ML, Guzmán-Mar JL, Hinojosa-Reyes L, Ramos-Delgado NA, Maldonado MI, Hernández-Ramírez A (2014) Activity of the ZnO-Fe2O3 catalyst on the degradation of Dicamba and 2,4-D herbicides using simulated solar light. Ceram Int 40(6):8701–8708. doi: 10.1016/j.ceramint.2014.01.088 CrossRefGoogle Scholar
  41. Mikhaylova M, Kim DK, Bobrysheva N, Osmolowsky M, Semenov V, Tsakalakos T, Muhammed M (2004) Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir 20(6):2472–2477. doi: 10.1021/la035648e CrossRefGoogle Scholar
  42. Mo M, Ma T, Jia L, Peng L, Guo X, Ding W (2009) Ferric oxide and ZnFe2O4 nanotubes derived from nano ZnO/FeOx core/shell structures. Mater Lett 63(26):2233–2235. doi: 10.1016/j.matlet.2009.07.041 CrossRefGoogle Scholar
  43. Morales MP, Veintemilas-Verdangure S, Montero MI, Serna CJ, Roig A, Casas L, Martinez B, Sandiumenge F (1999) Surface and internal spin canting in γ-Fe2O3 nanoparticles. Chem Mater 11(12):3058–3064. doi: 10.1021/cm991018f CrossRefGoogle Scholar
  44. Mukherjee S, Pal AK, Bhattacharya S, Chattopadhyay S (2008) Field-induced spin–flop transitions of interacting nanosized α-Fe2O3 particles dispersed in a silica glass matrix. J Phys Condens Matter 20(5):055204/1–055204/12. doi: 10.1088/0953-8984/20/05/055204 CrossRefGoogle Scholar
  45. Nadeem K, Krenn H, Traussnig T, Würschum R, Szabó DV, Letofsky-Papst I (2011) Effect of dipolar and exchange interactions on magnetic blocking of maghemite nanoparticles. J Magn Magn Mater 323(15):1998–2004. doi: 10.1016/j.jmmm.2011.02.041 CrossRefGoogle Scholar
  46. Narayan H, Alemu H, Macheli L, Thakurdesai M, Rao TKG (2009) Synthesis and characterization of Y3+-doped TiO2 nanocomposites for photocatalytic applications. Nanotechnology 20(25):255601/1–255601/8. doi: 10.1088/0957-4484/20/25/255601 CrossRefGoogle Scholar
  47. Pandey BK, Shahi AK, Shah J, Kotnala RK, Gopal R (2014) Optical and magnetic properties of Fe2O3 nanoparticles synthesized by laser ablation/fragmentation technique in different liquid media. Appl Surf Sci 289:462–471. doi: 10.1016/j.apsusc.2013.11.009 CrossRefGoogle Scholar
  48. Phu ND, Ngo DT, Hoang LH, Luong NH, Chau N, Hai NH (2011) Crystallization process and magnetic properties of amorphous iron oxide nanoparticles. J Phys D Appl Phys 44(34):345002/1–345002/7. doi: 10.1088/0022-3727/44/34/345002 CrossRefGoogle Scholar
  49. Pouretedal HR, Keshavarz MH (2010) Synthesis and characterization of Zn1 − XCuXS and Zn1 − XNiXS nanoparticles and their applications as photocatalyst in congo red degradation. J Alloys Compd 501(1):130–135. doi: 10.1016/j.jallcom.2010.04.058 CrossRefGoogle Scholar
  50. Pradhan GK, Martha S, Parida KM (2012) Synthesis of multifunctional nanostructured zinc-iron mixed oxide photocatalyst by a simple solution-combustion technique. ACS Appl Mater Interfaces 4(2):707–713. doi: 10.1021/am201326b CrossRefGoogle Scholar
  51. Qin L, Zhu Q, Li G, Liu F, Pan Q (2012) Controlled fabrication of flower–like ZnO–Fe2O3 nanostructured films with excellent lithium storage properties through a partly sacrificed template method. J Mater Chem 22(15):7544–7550. doi: 10.1039/c2jm30277b CrossRefGoogle Scholar
  52. Ramachandra TV, Jain R, Krishnadas G (2011) Hotspots of solar potential in India. Renew Sustain Energy Rev 15(6):3178–3186. doi: 10.1016/j.rser.2011.04.007 CrossRefGoogle Scholar
  53. Reda SM (2010) Synthesis of ZnO and Fe2O3 nanoparticles by sol–gel method and their application in dye-sensitized solar cells. Mater Sci Semicond Process 13(5–6):417–425. doi: 10.1016/j.mssp.2011.09.007 CrossRefGoogle Scholar
  54. Saffari J, Mir N, Ghanbari D, Khandan-Barani K, Hassanabadi A, Hosseini-Tabatabaei MR (2015) Sonochemical synthesis of Fe3O4/ZnO magnetic nanocomposites and their application in photo-catalytic degradation of various organic dyes. J Mater Sci Mater Electron 26(12):9591–9599. doi: 10.1007/s10854-015-3622-y CrossRefGoogle Scholar
  55. Schimanke G, Martin M (2000) In situ XRD study of the phase transition of nanocrystalline maghemite (γ-Fe2O3) to hematite (α-Fe2O3). Solid State Ionics 136–137(1):1235–1240. doi: 10.1016/S0167-2738(00)00593-2 CrossRefGoogle Scholar
  56. Si S, Li C, Wang X, Yu D, Peng Q, Li Y (2005) Magnetic monodisperse Fe3O4 nanoparticles. Cryst Growth Des 5(2):391–393. doi: 10.1021/cg0497905 CrossRefGoogle Scholar
  57. Si S, Li C, Wang X, Peng Q, Li Y (2006) Fe2O3/ZnO core-shell nanorods for gas sensors. Sensors Actuators B Chem 119(1):52–56. doi: 10.1016/j.snb.2005.11.050 CrossRefGoogle Scholar
  58. Song YB, Song XD, Cheng CJ, Zhao ZG (2015) Poly(4-styrenesulfonic acid-co-maleic acid)-sodium-modified magnetic reduced graphene oxide for enhanced adsorption performance toward cationic dyes. RSC Adv 5(106):87030–87042. doi: 10.1039/C5RA18255G CrossRefGoogle Scholar
  59. Sreeja V, Joy PA (2007) Microwave-hydrothermal synthesis of γ-Fe2O3 nanoparticles and their magnetic properties. Mater Res Bull 42(8):1570–1576. doi: 10.1016/j.materresbull.2006.11.014 CrossRefGoogle Scholar
  60. Suresh R, Giribabu K, Manigandan R, Stephen A, Narayanan V (2014) Fabrication of Ni–Fe2O3 magnetic nanorods and application to the detection of uric acid. RSC Adv 4(33):17146–17155. doi: 10.1039/c4ra00725e CrossRefGoogle Scholar
  61. Teja AS, Koh PY (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55(1–2):22–45. doi: 10.1016/j.pcrysgrow.2008.08.003 CrossRefGoogle Scholar
  62. Thiripuranthagan S, Raj D, Kannan K (2015) Photocatalytic degradation of congo red on silica supported Ag impregnated TiO2. J Nanosci Nanotechnol 15(6):4727–4733. doi: 10.1166/jnn.2015.9795 CrossRefGoogle Scholar
  63. Tsuzuki T, Schäffel F, Muroi M, McCormick PG (2011) Magnetic properties of mechanochemically synthesized γ-Fe2O3 nanoparticles. J Alloys Compd 509(17):5420–5425. doi: 10.1016/j.jallcom.2011.02.073 CrossRefGoogle Scholar
  64. Wang J, Li R, Zhang Z, Sun W, Xu R, Xie Y, Xing Z, Zhang X (2008) Efficient photocatalytic degradation of organic dyes over titanium dioxide coating upconversion luminescence agent under visible and sunlight irradiation. Appl Catal A Gen 334(1–2):227–233. doi: 10.1016/j.apcata.2007.10.009 CrossRefGoogle Scholar
  65. Wang J, Liu P, Fu X, Li Z, Han W, Wang X (2009) Relationship between oxygen defects and the photocatalytic property of ZnO nanocrystals in nafion membranes. Langmuir 25(2):1218–1223. doi: 10.1021/la803370z CrossRefGoogle Scholar
  66. Wang Y, Deng K, Zhang L (2011) Visible light photocatalysis of BiOI and its photocatalytic activity enhancement by in situ ionic liquid modification. J Phys Chem C 115(29):14300–14308. doi: 10.1021/jp2042069 CrossRefGoogle Scholar
  67. Wang Y, Wang Q, Zhan X, Wang F, Safdar M, He J (2013) Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale 5(18):8326–8339. doi: 10.1039/c3nr01577g CrossRefGoogle Scholar
  68. Wilson JL, Poddar P, Frey NA, Srikanth H, Mohomed K, Harmon JP, Kotha S, Wachsmuth J (2004) Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles. J Appl Phys 95(3):1439–1443. doi: 10.1063/1.1637705 CrossRefGoogle Scholar
  69. Woo K, Hong J, Choi S, Lee H, Ahn J, Kim CS, Lee SW (2004) Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem Mater 16(14):2814–2818. doi: 10.1021/cm049552x CrossRefGoogle Scholar
  70. Wu H, Wang L (2014) Phase transformation-induced crystal plane effect of iron oxide micropine dendrites on gaseous toluene photocatalytic oxidation. Appl Surf Sci 288(1):398–404. doi: 10.1016/j.apsusc.2013.10.046 CrossRefGoogle Scholar
  71. Wu P, Du N, Zhang H, Jin L, Yang D (2010) Functionalization of ZnO nanorods with γ-Fe2O3 nanoparticles: layer-by-layer synthesis, optical and magnetic properties. Mater Chem Phys 124(2–3):908–911. doi: 10.1016/j.matchemphys.2010.08.009 CrossRefGoogle Scholar
  72. Wu W, Zhang S, Xiao X, Zhou J, Ren F, Sun L, Jiang C (2012) Controllable synthesis, magnetic properties, and enhanced photocatalytic activity of spindlelike mesoporous α-Fe2O3/ZnO core-shell heterostructures. ACS Appl Mater Interfaces 4(7):3602–3609. doi: 10.1021/am300669a CrossRefGoogle Scholar
  73. Wu W, Jiang C, Roy VAL (2015) Recent progress in magnetic iron oxide–semiconductor composite nanomaterials as promising photocatalysts. Nanoscale 7(1):38–58. doi: 10.1039/c4nr04244a Google Scholar
  74. Xuan S, Jiang W, Gong X, Hu Y, Chen Z (2009) Magnetically separable Fe3O4/TiO2 hollow spheres: fabrication and photocatalytic activity. J Phys Chem C 113(2):553–558. doi: 10.1021/jp8073859 CrossRefGoogle Scholar
  75. Yang G, Zhang B, Wang J, Xie S, Li X (2015) Preparation of polylysine-modified superparamagnetic iron oxide nanoparticles. J Magn Magn Mater 374:205–208. doi: 10.1016/j.jmmm.2014.08.040 CrossRefGoogle Scholar
  76. Yang X, Qian F, Zou G, Li M, Lu J, Li Y, Bao M (2016) Facile fabrication of acidified g-C3N4/g-C3N4 hybrids with enhanced photocatalysis performance under visible light irradiation. Appl Catal B Environ 193:22–35. doi: 10.1016/j.apcatb.2016.03.060 CrossRefGoogle Scholar
  77. Ye M, Zhang Q, Hu Y, Ge J, Lu Z, He L, Chen Z, Yin Y (2010) Magnetically recoverable core-shell nanocomposites with enhanced photocatalytic activity. Chem: Eur J 16(21):6243–6250. doi: 10.1002/chem.200903516 CrossRefGoogle Scholar
  78. Yin Q, Qiao R, Zhu L, Li Z, Li M, Wu W (2014) α-Fe2O3 decorated ZnO nanorod-assembled hollow microspheres: synthesis and enhanced visible-light photocatalysis. Mater Lett 135:135–138. doi: 10.1016/j.matlet.2014.07.149 CrossRefGoogle Scholar
  79. Yu L, Peng X, Ni F, Li J, Wang D, Luan Z (2013) Arsenite removal from aqueous solutions by γ-Fe2O3-TiO2 magnetic nanoparticles through simultaneous photocatalytic oxidation and adsorption. J Hazard Mater 246–247:10–17. doi: 10.1016/j.jhazmat.2012.12.007 CrossRefGoogle Scholar
  80. Zhang L, Papaefthymiou GC, Ying JY (1997) Size quantization and interfacial effects on a novel γ-Fe2O3/SiO2 magnetic nanocomposite via sol–gel matrix-mediated synthesis. J Appl Phys 81(10):6892/1–6892/10. doi: 10.1063/1.365233 Google Scholar
  81. Zhang J, Liu X, Wang L, Yang T, Guo X, Wu S, Wang S, Zhang S (2011) Synthesis and gas sensing properties of α-Fe2O3@ZnO core-shell nanospindles. Nanotechnology 22(18):185501/1–185501/7. doi: 10.1088/0957-4484/22/18/185501 Google Scholar
  82. Zhang S, Ren F, Wu W, Zhou J, Xiao X, Sun L, Liu Y, Jiang C (2013) Controllable synthesis of recyclable core-shell γ-Fe2O3@SnO2 hollow nanoparticles with enhanced photocatalytic and gas sensing properties. Phys Chem Chem Phys 15(21):8228–8236. doi: 10.1039/c3cp50925g CrossRefGoogle Scholar
  83. Zhang R, Wang L, Deng J, Zhou T, Lou Z, Zhang T (2015) Hierarchical structure with heterogeneous phase as high performance sensing materials for trimethylamine gas detecting. Sensors Actuators B Chem 220(1):1224–1231. doi: 10.1016/j.snb.2015.07.036 CrossRefGoogle Scholar
  84. Zhiyong Y, Ruiying Q, Huanrong L, Zhiyin W, Xiaohong M, Chaonan D (2015) Preparation and photocatalytic activity of SnO2. Mater Lett 170(1):25–30. doi: 10.1016/j.matlet.2015.12.100 Google Scholar
  85. Zhou X, Xiao Y, Wang M, Sun P, Liu F, Liang X, Li X, Lu G (2015) Highly enhanced sensing properties for ZnO nanoparticle-decorated round-edged α-Fe2O3 hexahedrons. ACS Appl Mater Interfaces 7(16):8743–8749. doi: 10.1021/acsami.5b01071 CrossRefGoogle Scholar
  86. Zysler RD, Fiorani D, Testa AM (2001) Investigation of magnetic properties of interacting Fe2O3 nanoparticles. J Magn Magn Mater 224(1):5–11. doi: 10.1016/S0304-8853(00)01328-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations