Advertisement

Influence of shear forces on the aggregation and sedimentation behavior of cerium dioxide (CeO2) nanoparticles under different hydrochemical conditions

  • Bowen Lv
  • Chao Wang
  • Jun Hou
  • Peifang Wang
  • Lingzhan Miao
  • Yi Li
  • Yanhui Ao
  • Yangyang Yang
  • Guoxiang You
  • Yi Xu
Research Paper

Abstract

This study contributed to a better understanding of the behavior of nanoparticles (NPs) in dynamic water. First, the aggregation behavior of CeO2 NPs at different pH values in various salt solutions was examined to determine the appropriate hydrochemical conditions for hydrodynamics study. Second, the aggregation behavior of CeO2 NPs under different shear forces was investigated at pH 4 and ionic strength 0 in various salt solutions to find out whether shear forces could influence the stability of the nanoparticles and if yes, how. Also, five-stage sedimentation tests were conducted to understand the influence of shear stress on the vertical distribution of CeO2 NPs in natural waters. The aggregation test showed that the shear force could increase the collision efficiency between NPs during aggregation and cause a relatively large mass of NPs to remain in suspension. Consequently, the nanoparticles had a greater possibility of continued aggregation. The sedimentation test under static conditions indicated that a large mass of NPs (>1000 nm) sink to the bottom layer, leaving only small aggregates dispersed in the upper or middle layer of the solution. However, later sedimentation studies under stirring conditions demonstrated that shear forces can disrupt this stratification phenomenon. These results suggest that shear forces can influence the spatial distribution of NPs in natural waters, which might lead to different toxicities of CeO2 NPs to aquatic organisms distributed in the different water layers. This study contributes to a better understanding of nanomaterial toxicology and provides a way for further research.

Graphical Abstract

Keywords

Shear force CeO2 nanoparticles Aggregation Sedimentation hydrochemical conditions Health and environmental effects 

Notes

Acknowledgments

We are grateful for the grants from the project supported by the National Science Funds for the Creative Research Groups of China (No. 51421006), the National Natural Science Foundation of China (No. 51479047, 51209069), the National Science Funds for Distinguished Young Scholars (No. 51225901), the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT13061), the Key Program of National Natural Science Foundation of China (No. 41430751), the National Science Funds for Excellent Young Scholars (No. 51422902), the Fundamental Research Funds for the Central Universities (No. 2015B22014, No. 2015B05714) and PAPD.

Supplementary material

11051_2016_3501_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1387 kb)

References

  1. Abdel-Khalek AA, Kadry MAM, Badran SR, Marie MS (2015) Comparative toxicity of copper oxide bulk and nano particles in Nile tilapia; Oreochromis niloticus: biochemical and oxidative stress. J Basic Appl Zool 72:43–57CrossRefGoogle Scholar
  2. Alexander CM, Dabrowiak JC, Goodisman J (2013) Gravitational sedimentation of gold nanoparticles. J Colloid Interface Sci 396:53–62CrossRefGoogle Scholar
  3. Angela BM, Vallottonb P, Aptea SC (2015) On the mechanism of nanoparticulate CeO2 toxicity to freshwater algae. Aquat Toxicol 168:90–97CrossRefGoogle Scholar
  4. Anne-Archard D, d’Olce M, Tourbin M, Frances C (2013) Aggregation of silica nanoparticles in concentrated suspensions under turbulent, shear and extensional flows. Chem Eng Sci 95:184–193CrossRefGoogle Scholar
  5. Arul NS, Mangalaraj D, Kim TW (2015) Photocatalytic degradation mechanisms of CeO2/Tb2O3 nanotubes. Appl Surf Sci 349:459–464CrossRefGoogle Scholar
  6. Baalousha M (2009) Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter. Sci Total Environ 407:2093–2101CrossRefGoogle Scholar
  7. Baalousha M, Nur Y, Römer I, Tejamaya M, Lead JR (2013) Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles. Sci Total Environ 454–455:119–131CrossRefGoogle Scholar
  8. Bian SW, Mudunkotuwa IA, Rupasinghe T, Grassian VH (2011) Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir 27:6059–6068CrossRefGoogle Scholar
  9. Bouhaik IS, Leroy P, Ollivier P, Azaroual M, Mercury L (2013) Influence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles: application to the modeling of their aggregation kinetics. J Colloid Interface Sci 406:75–85CrossRefGoogle Scholar
  10. Bubakova P, Pivokonsky M, Filip P (2013) Effect of shear rate on aggregate size and structure in the process of aggregation and at steady state. Powder Technol 235:540–549CrossRefGoogle Scholar
  11. Busch VM, Loosli F, Santagapita PR, Buera MP, Stoll S (2015) Formation of complexes between hematite nanoparticles and a non-conventional galactomannan gum. Toward a better understanding on interaction processes. Sci Total Environ 532:556–563CrossRefGoogle Scholar
  12. Chae YJ, Pham CH, Lee J, Bae E, Yi J, Gu MB (2009) Evaluation of the toxic impact of silver nanoparticles on Japanese Medaka (Oryzias latipes). Aquat Toxicol 94:320–327CrossRefGoogle Scholar
  13. Chekli L, Zhao YX, Tijing LD, Phuntsho S, Donner E, Lombi E, Gao BY, Shon HK (2015) Aggregation behaviour of engineered nanoparticles in natural waters: characterising aggregate structure using on-line laser light scattering. J Hazard Mater 284:190–200CrossRefGoogle Scholar
  14. Chen SF, Zhang H (2012) Aggregation kinetics of nanosilver in different water conditions. Adv Nat Sci Nanosci Nanotechnol 3:035006CrossRefGoogle Scholar
  15. Chen KL, Smith BA, Ball WP, Fairbrother DH (2010) Assessing the colloidal properties of engineered nanoparticles in water: case studies from fullerene C60 nanoparticles and carbon nanotubes. Environ Chem 7:10–27CrossRefGoogle Scholar
  16. Cwiertny DM, Handler RM, Schaefer MV, Grassian VH, Scherer MM (2008) Interpreting nanoscale size-effects in aggregated Fe-oxide suspensions: reaction of Fe(II) with goethite. Geochim Cosmochim Acta 72:1365–1380CrossRefGoogle Scholar
  17. Dahle JT, Livi K, Arai Y (2015) Effects of pH and phosphate on CeO2 nanoparticle dissolution. Chemosphere 119:1365–1371CrossRefGoogle Scholar
  18. El Badawy AM, Scheckel KG, Suidan M, Tolaymat T (2012) The impact of stabilization mechanism on the aggregation kinetics of Silver nanoparticles. Sci Total Environ 429:325–331CrossRefGoogle Scholar
  19. Forbes E (2011) Shear, selective and temperature responsive flocculation: a comparison of fine particle flotation techniques. Int J Miner Process 99:1–10CrossRefGoogle Scholar
  20. Gao J, Youn S, Hovsepyan A, Llaneza VL, Wang Y, Bitton G, Bonzongo JCJ (2009) Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples: effects of water chemical composition. Environ Sci Technol 43:3322–3328CrossRefGoogle Scholar
  21. Gómez-Rivera F, Field JA, Brown D, Sierra-Alvarez R (2012) Fate of cerium dioxide (CeO2) nanoparticles in municipal wastewater during activated sludge treatment. Bioresour Technol 108:300–304CrossRefGoogle Scholar
  22. Handy RD, von der Kammer F, Lead JR, Hassellöv M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314CrossRefGoogle Scholar
  23. Hsu JP, Nacu A (2004) An experimental study on the rheological properties of aqueous ceria dispersions. J Colloid Interface Sci 274:277–284CrossRefGoogle Scholar
  24. Hu YH, Qiu GZ, Miller JD (2003) Hydrodynamic interactions between particles in aggregation and flotation. Int J Miner Process 70:157–170CrossRefGoogle Scholar
  25. Hunter RJ, Ottewill RH, Rowell RL (1981) Zeta potential in colloid science: principles and applications. Academic PressGoogle Scholar
  26. Huynh KA, Chen KL (2011) Aggregation kinetics of citrate and polyvinylpyrrolidone coated Silver nanoparticles in monovalent and divalent electrolyte solutions. Environ Sci Technol 45:5564–5571CrossRefGoogle Scholar
  27. Karimian H, Babaluo AA (2007) Halos mechanism in stabilizing of colloidal suspensions: nanoparticle weight fraction and pH effects. J Eur Ceram Soc 27:19–25CrossRefGoogle Scholar
  28. Keller AA, Lazareva A (2014) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1(1):165–170CrossRefGoogle Scholar
  29. Lanphere JD, Rogers B, Luth C, Bolster CH, Walker SL (2014) Stability and transport of graphene oxide nanoparticles in groundwater and surface water. Environ Eng Sci 31:350–359CrossRefGoogle Scholar
  30. Lee J, Bartelt-Hunt SL, Li Y, Morton M (2015) Effect of 17β-estradiol on stability and mobility of TiO2 rutile nanoparticles. Sci Total Environ 511:195–202CrossRefGoogle Scholar
  31. Leroy P, Devau N, Revil A, Bizi M (2013) Influence of surface conductivity on the apparent zeta potential of amorphous silica nanoparticles. J Colloid Interface Sci 410:81–93CrossRefGoogle Scholar
  32. Li KG, Chen YS (2012) Effect of natural organic matter on the aggregation kinetics of CeO2 nanoparticles in KCl and CaCl2 solutions: measurements and modeling. J Hazard Mater 209–210:264–270CrossRefGoogle Scholar
  33. Liu HW, Liu HF (2016) Preparing micro/nano dumbbell-shaped CeO2 for high performance electrode materials. J Alloys Compd 681:342–349CrossRefGoogle Scholar
  34. Liu J, Legros S, Ma G, Veinot JGC, von der Kammer F, Hofmann T (2012) Influence of surface functionalization and particle size on the aggregation kinetics of engineered nanoparticles. Chemosphere 87:918–924CrossRefGoogle Scholar
  35. Liu J, Legros S, von der Kammer F, Hofmann T (2013) Natural organic matter concentration and hydrochemistry influence aggregation kinetics of functionalized engineered nanoparticles. Environ Sci Technol 47:4113–4120CrossRefGoogle Scholar
  36. Loosli F, Le Coustumer P, Stoll S (2013) TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee river humic acids. pH and concentration effects on nanoparticle stability. Water Res 47:6052–6063CrossRefGoogle Scholar
  37. Majedi SM, Kelly BC, Lee HK (2014) Role of combinatorial environmental factors in the behavior and fate of ZnO nanoparticles in aqueous systems: a multiparametric analysis. J Hazard Mater 264:370–379CrossRefGoogle Scholar
  38. Masaki S, Shiotsu H, Ohnuki T, Sakamoto F, Utsunomiya S (2015) Effects of CeO2 nanoparticles on microbial metabolism. Chem Geol 391:33–41CrossRefGoogle Scholar
  39. McLeod AM, Arnot JA, Borga K, Selck H, Kashian DR, Krause A, Paterson G, Haffner GD, Drouillard KG (2015) Quantifying uncertainty in the trophic magnification factor related to spatial movements of organisms in a food web. Integr Environ Assess Manag 11:306–318CrossRefGoogle Scholar
  40. Miao LZ, Wang C, Hou J, Wang PF, Ao YH, Li Y, Lv BW, Yang YY, You GX, Xu Y (2015) Enhanced stability and dissolution of CuO nanoparticles by extracellular polymeric substances in aqueous environment. J Nanopart Res 17:404CrossRefGoogle Scholar
  41. N’Zi KG, Yao SS, Bi GG, Ndouba V (2015) Update of ichthyofauna diversity and ecological status of a coastal River Nero (Coˆ te d’Ivoire—West Africa). Saudi J Biol Sci 22:265–273CrossRefGoogle Scholar
  42. Nur Y, Lead JR, Baalousha M (2015) Evaluation of charge and agglomeration behavior of TiO2 nanoparticles in ecotoxicological media. Sci Total Environ 535:45–53CrossRefGoogle Scholar
  43. Oriekhova O, Stoll S (2016) Effects of pH and fulvic acids concentration on the stability of fulvic acids e cerium (IV) oxide nanoparticle complexes. Chemosphere 144:131–137CrossRefGoogle Scholar
  44. Pamies R, Cifre JGH, Espin VF, Collado-Gonzalez M, Banos FRGD, Torre JGDL (2014) Aggregation behaviour of gold nanoparticles in saline aqueous media. J Nanopart Res 16:2376CrossRefGoogle Scholar
  45. Park MVDZ, Neigh AM, Vermeulen JP, de la Fonteyne LJJ, Verharen HW, Briedé JJ, Loveren HV, de Jong WH (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32:9810–9817CrossRefGoogle Scholar
  46. Peng YH, Tso CP, Tsai YC, Zhuang CM, Shih YH (2015) The effect of electrolytes on the aggregation kinetics of three different ZnO nanoparticles in water. Sci Total Environ 530–531:183–190CrossRefGoogle Scholar
  47. Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186:1–15CrossRefGoogle Scholar
  48. Petosa AR, Jaisi DP, Quevedo IR, Elimelech M, Tufenkji N (2010) Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ Sci Technol 44:6532–6549CrossRefGoogle Scholar
  49. Poynton HC, Lazorchak JM, Impellitteri CA, Smith ME, Rogers K, Patra M, Hammer KA, Allen HJ, Vulpe CD (2011) Differential gene expression in Daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions. Environ Sci Technol 45:762–768CrossRefGoogle Scholar
  50. Qi J, Ye YY, Wu JJ, Wang HT, Li FT (2013) Dispersion and stability of titanium dioxide nanoparticles in aqueous suspension: effects of ultrasonication and concentration. Water Sci Technol 67:147–151CrossRefGoogle Scholar
  51. Quik JTK, Lynch I, Van Hoecke K, Miermans CJH, De Schamphelaere KAC, Janssen CR, Dawson KA, Cohen Stuart MA, Van De Meent D (2010) Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water. Chemosphere 81:711–715CrossRefGoogle Scholar
  52. Rojas-Pérez A, Diaz-Diestra D, Frias-Flores CB, Beltran-Huarac J, Das KC, Weiner BR, Morellab G, Díaz-Vázquez LM (2015) Catalytic effect of ultrananocrystalline Fe3O4 on algal bio-crude production via HTL process. Nanoscale 7:17664–17671CrossRefGoogle Scholar
  53. Schneider L, Maher WA, Potts J, Taylor AM, Batley GE, Krikowa F, Chariton AA, Grubery B (2015) Modeling food web structure and selenium biomagnification in lake Macquarie, New South Wales, Australia, using stable Carbon and Nitrogen isotopes. Environ Toxicol Chem 34(3):608–617CrossRefGoogle Scholar
  54. Scown TM, van Aerle R, Tyler CR (2010) Review: do engineered nanoparticles pose a significant threat to the aquatic environment? Crit Rev Toxicol 40:653–670CrossRefGoogle Scholar
  55. Shih YH, Zhuang CM, Peng YH, Lin CH, Tseng YM (2012) The effect of inorganic ions on the aggregation kinetics of lab-made TiO2 nanoparticles in water. Sci Total Environ 435–436:446–452CrossRefGoogle Scholar
  56. Silva T, Pokhrel L, Dubey B, Tolaymat T, Maier K, Liu X (2014) Particle size, surface charge and concentration dependent ecotoxicity of three organo-coated silver nanoparticles: comparison between general linear model-predicted and observed toxicity. Sci Total Environ 468:968–976CrossRefGoogle Scholar
  57. Soenen SJ, Cuyper MD, De Smedt SC, Braeckmans K (2012) Chapter ten—investigating the toxic effects of iron oxide nanoparticles. Methods Enzymol 509:195–224CrossRefGoogle Scholar
  58. Song S, Lopez-Valdvieso A, Reyes-Bahena JL, Bermejo-Perezh I, Trass O (2000) Hydrophobic flocculation of galena fines in aqueous suspensions [J]. J Colloid Interface Sci 227:272–281CrossRefGoogle Scholar
  59. Tso CP, Zhung CM, Shih YY, Tseng YM, Wu SC, Doong RA (2010) Stability of metal oxide nanoparticles in aqueous solutions. Water Sci Technol 61:127–133CrossRefGoogle Scholar
  60. Van Hoecke K, De Schamphelaere KAC, Van der Meeren P, Smagghe G, Janssen CR (2011) Aggregation and ecotoxicity of CeO2 nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength. Environ Pollut 159:970–976CrossRefGoogle Scholar
  61. Van Koetsem F, Verstraete S, Van der Meeren P, Du Laing G (2015) Stability of engineered nanomaterials in complex aqueous matrices: settling behaviour of CeO2 nanoparticles in natural surface waters. Environ Res 142:207–214CrossRefGoogle Scholar
  62. Wang H, Adeleye AS, Huang Y, Li F, Keller AA (2015) Heteroaggregation of nanoparticles with biocolloids and geocolloids. Adv Colloid Interface Sci (in press)Google Scholar
  63. Yin WZ, Yang XS, Zhou DP, Li YJ, Lü ZF (2011) Shear hydrophobic flocculation and flotation of ultrafine Anshan hematite using sodium oleate. Trans Nonferrous Met Soc China 21:652–664CrossRefGoogle Scholar
  64. Zhai Y, Zhang Y, Qin F, Yao X (2015) An electrochemical DNA biosensor for evaluating the effect of mix anion in cellular fluid on the antioxidant activity of CeO2 nanoparticles. Biosens Bioelectron 70:130–136CrossRefGoogle Scholar
  65. Zhang H, Smith JA, Oyanedel-Craver V (2012) The effect of natural water conditions on the anti-bacterial performance and stability of silver nanoparticles capped with different polymers. Water Res 46:691–699CrossRefGoogle Scholar
  66. Zhu M, Wang H, Keller AA, Wang T, Li F (2014) The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths. Sci Total Environ 487:375–380CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Bowen Lv
    • 1
    • 2
  • Chao Wang
    • 1
    • 2
  • Jun Hou
    • 1
    • 2
  • Peifang Wang
    • 1
    • 2
  • Lingzhan Miao
    • 1
    • 2
  • Yi Li
    • 1
    • 2
  • Yanhui Ao
    • 1
    • 2
  • Yangyang Yang
    • 1
    • 2
  • Guoxiang You
    • 1
    • 2
  • Yi Xu
    • 1
    • 2
  1. 1.Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of EducationHohai UniversityNanjingPeople’s Republic of China
  2. 2.College of EnvironmentHohai UniversityNanjingPeople’s Republic of China

Personalised recommendations