Plasma-assisted nitrogen doping of VACNTs for efficiently enhancing the supercapacitor performance

  • Alireza Mashayekhi
  • Seyed Mahmoud Hosseini
  • Morteza Hassanpour Amiri
  • Naser Namdar
  • Zeinab Sanaee
Research Paper


Nitrogen doping of vertically aligned carbon nanotubes (VACNTs) using plasma-enhanced chemical vapour deposition has been investigated to improve the supercapacitance performance of CNTs. Incorporating electrochemical measurements on the open-ended nitrogen-doped CNTs, showed the achievement of 6 times improvement in the capacitance value. For nitrogen-doped CNTs on silicon substrate, specific capacitance of 60 F g−1 was obtained in 0.5 M KCl solution, with capacity retention ratio above 90 % after cycled at 0.1 A g−1 for 5000 cycles. Using this sample, a symmetric supercapacitance was fabricated which showed the power density of 37.5 kW kg−1. The facile fabrication approach and its excellent capacitance improvement, propose it as an efficient technique for enhancing the supercapacitance performance of the carbon-based electrodes.


Nitrogen doping PECVD Open-ended CNT Supercapacitor Energy storage 



The authors would like to thank Professor Mohajerzadeh and Mr. Mehdi Akbari for their technical assistance. This work has been partially supported by Iran National Science Foundation (INSF).


  1. Achour A, Vizireanu S, Dinescu G, Le Brizoual L, Djouadi M-A, Boujtita M (2013) Electrochemical anodic oxidation of nitrogen doped carbon nanowall films: X-ray photoelectron and Micro-Raman spectroscopy study. Appl Surf Sci 273:49–57CrossRefGoogle Scholar
  2. Achour A, Ducros JB, Porto RL, Boujtita M, Gautron E, Le Brizoual L, Djouadi MA, Brousse T (2014a) Hierarchical nanocomposite electrodes based on titanium nitride and carbon nanotubes for micro-supercapacitors. Nano Energ 7:104–113CrossRefGoogle Scholar
  3. Achour A, Soussou MA, Aissa KA, Islam M, Barreau N, Faulques E, Le Brizoual L, Djouadi MA, Boujtita M (2014b) Nanostructuration and band gap emission enhancement of ZnO film via electrochemical anodization. Thin Solid Films 571:168–174CrossRefGoogle Scholar
  4. Achour A, Porto RL, Soussou M-A, Islam M, Boujtita M, Aissa KA, Le Brizoual L, Djouadi A, Brousse T (2015) Titanium nitride films for micro-supercapacitors: effect of surface chemistry and film morphology on the capacitance. J Power Sources 300:525–532CrossRefGoogle Scholar
  5. An KH, Kim WS, Park YS, Moon J-M, Bae DJ, Lim SC, Lee YS, Lee YH (2001) Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv Funct Mater 11(5):387–392CrossRefGoogle Scholar
  6. Basiuk VA, Basiuk EV (2008) Chemistry of Carbon Nanotubes. American Scientific Publishers, Stevenson Ranch, p 1050Google Scholar
  7. Bulusheva LG, Fedorovskaya EO, Kurenya AG, Okotrub AV (2013) Supercapacitor performance of nitrogen-doped carbon nanotube arrays. Phys Status Solidi B 250(12):2586–2591CrossRefGoogle Scholar
  8. Chang J-K, Lin C-T, Tsai W-T (2004) Manganese oxide/carbon composite electrodes for electrochemical capacitors. Electrochem Commun 6(7):666–671CrossRefGoogle Scholar
  9. Chen L-F, Zhang X-D, Liang H-W, Kong M, Guan Q-F, Chen P, Wu ZY, Yu S-H (2012) Synthesis of nitrogen-doped porous carbon nanofibers as an efficient electrode material for supercapacitors. ACS Nano 6(8):7092–7102CrossRefGoogle Scholar
  10. Chmiola J, Largeot C, Taberna P-L, Simon P, Gogotsi Y (2010) Monolithic carbide-derived carbon films for micro-supercapacitors. Science 328(5977):480–483CrossRefGoogle Scholar
  11. Conway BE (1999) Electrochemical supercapacitor. Springer, New York, p 698CrossRefGoogle Scholar
  12. Cuesta A, Dhamelincourt P, Laureyns J, Martinez-Alonso A, Tascón JMD (1994) Raman microprobe studies on carbon materials. Carbon 32(8):1523–1532CrossRefGoogle Scholar
  13. Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phy 9(15):1774–1785CrossRefGoogle Scholar
  14. Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S (2006) Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater 5(12):987–994CrossRefGoogle Scholar
  15. Glerup M, Castignolles M, Holzinger M, Hug G, Loiseau A, Bernier P (2003) Synthesis of highly nitrogen-doped multi-walled carbon nanotubes. Chem Commun 20:2542–2543CrossRefGoogle Scholar
  16. Gohel A, Chin KC, Zhu YW, Sow CH, Wee ATS (2005) Field emission properties of N2 and Ar plasma-treated multi-wall carbon nanotubes. Carbon 43(12):2530–2535CrossRefGoogle Scholar
  17. Golberg D, Bando Y, Bourgeois L, Kurashima K, Sato T (2000) Large-scale synthesis and HRTEM analysis of single-walled B- and N-doped carbon nanotube bundles. Carbon 38(14):2017–2027CrossRefGoogle Scholar
  18. Guo H, Gao Q (2009) Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor. J Power Sources 186(2):551–556CrossRefGoogle Scholar
  19. Guo Q, Xie Y, Wang X, Zhang S, Hou T, Lv S (2004) Synthesis of carbon nitride nanotubes with the C 3 N 4 stoichiometry via a benzene-thermal process at low temperatures. Chem Commun 1:26–27CrossRefGoogle Scholar
  20. Hall PJ, Mirzaeian M, Fletcher SI, Sillars FB, Rennie AJR, Shitta-Bey GO, Wilson G, Cruden A, Carter R (2010) Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy Environ Sci 3(9):1238–1251CrossRefGoogle Scholar
  21. He S, Hou H, Chen W (2015) 3D porous and ultralight carbon hybrid nanostructure fabricated from carbon foam covered by monolayer of nitrogen-doped carbon nanotubes for high performance supercapacitors. J Power Sources 280:678–686CrossRefGoogle Scholar
  22. Hulicova-Jurcakova D, Seredych M, Lu GQ, Bandosz TJ (2009) Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater 19(3):438–447CrossRefGoogle Scholar
  23. Hussain S, Amade R, Jover E, Bertran E (2013) Nitrogen plasma functionalization of carbon nanotubes for supercapacitor applications. J Mater Sci 48(21):7620–7628CrossRefGoogle Scholar
  24. Ismagilov ZR, Shalagina AE, Podyacheva OY, Ischenko AV, Kibis LS, Boronin AI, Chesalov YA, Kochubey DI, Romanenko AI, Anikeeva OB, Buryakov TI (2009) Structure and electrical conductivity of nitrogen-doped carbon nanofibers. Carbon 47(8):1922–1929CrossRefGoogle Scholar
  25. Iyyamperumal E, Wang S, Dai L (2012) Vertically aligned BCN nanotubes with high capacitance. ACS Nano 6(6):5259–5265CrossRefGoogle Scholar
  26. Jang JW, Lee CE, Lyu SC, Lee TJ, Lee CJ (2004) Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanotubes. Appl Phys Lett 84(15):2877CrossRefGoogle Scholar
  27. Jeong HM, Lee JW, Shin WH, Choi YJ, Shin HJ, Kang JK, Choi JW (2011) Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 11(6):2472–2477CrossRefGoogle Scholar
  28. John AR, Arumugam P (2015) Open ended nitrogen-doped carbon nanotubes for the electrochemical storage of energy in a supercapacitor electrode. J Power Sources 277:387–392CrossRefGoogle Scholar
  29. Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9(5):1872–1876CrossRefGoogle Scholar
  30. Kim K-S, Park S-J (2012) Synthesis and high electrochemical capacitance of N-doped microporous carbon/carbon nanotubes for supercapacitor. J Electroanal Chem 673:58–64CrossRefGoogle Scholar
  31. Kim TY, Lee HW, Stoller M, Dreyer DR, Bielawski CW, Ruoff RS, Suh KS (2010) High-performance supercapacitors based on poly (ionic liquid)-modified graphene electrodes. ACS Nano 5(1):436–442CrossRefGoogle Scholar
  32. Kondo S, Kawai S, Takeuchi W, Yamakawa K, Den S, Kano H, Hiramatsu M, Hori M (2009) Initial growth process of carbon nanowalls synthesized by radical injection plasma-enhanced chemical vapor deposition. J Appl Phys 106(9):4302CrossRefGoogle Scholar
  33. Kouvetakis J, Todd M, Wilkens B, Bandari A, Cave N (1994) Novel synthetic routes to carbon-nitrogen thin films. Chem Mater 6(6):811–814CrossRefGoogle Scholar
  34. Lee DH, Lee WJ, Kim SO (2009) Highly efficient vertical growth of wall-number-selected. N-doped Carbon Nanotub Arrays Nano Lett 9(4):1427–1432Google Scholar
  35. Lee K-Y, Lin Y-S, Chen Y-M, Huang Y-S (2010) Influence of the nitrogen content on the electrochemical capacitor characteristics of vertically aligned carbon nanotubes. Physica E 42(10):2799–2803CrossRefGoogle Scholar
  36. Lee Y-H, Lee Y-F, Chang K-H, Hu C-C (2011) Synthesis of N-doped carbon nanosheets from collagen for electrochemical energy storage/conversion systems. Electrochem Commun 13(1):50–53CrossRefGoogle Scholar
  37. Liu H, Zhang Y, Li R, Sun X, Désilets S, Abou-Rachid H, Jaidann M, Lussier L-S (2010) Structural and morphological control of aligned nitrogen-doped carbon nanotubes. Carbon 48(5):1498–1507CrossRefGoogle Scholar
  38. Lota G, Centeno TA, Frackowiak E, Stoeckli F (2008) Improvement of the structural and chemical properties of a commercial activated carbon for its application in electrochemical capacitors. Electrochim Acta 53(5):2210–2216CrossRefGoogle Scholar
  39. Maldonado S, Stevenson KJ (2005) Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes. J Phys Chem B 109(10):4707–4716CrossRefGoogle Scholar
  40. Maldonado S, Morin S, Stevenson KJ (2006) Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping. Carbon 44(8):1429–1437CrossRefGoogle Scholar
  41. Oku T, Kawaguchi M (2000) Microstructure analysis of CN-based nanocage materials by high-resolution electron microscopy. Diam Relat Mater 9(3):906–910CrossRefGoogle Scholar
  42. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157(1):11–27CrossRefGoogle Scholar
  43. Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci 104(34):13574–13577CrossRefGoogle Scholar
  44. Seredych M, Hulicova-Jurcakova D, Lu GQ, Bandosz TJ (2008) Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon 46(11):1475–1488CrossRefGoogle Scholar
  45. Sharifi T, Nitze F, Barzegar HR, Tai C-W, Mazurkiewicz M, Malolepszy A, Stobinski L, Wågberg T (2012) Nitrogen doped multi walled carbon nanotubes produced by CVD-correlating XPS and Raman spectroscopy for the study of nitrogen inclusion. Carbon 50(10):3535–3541CrossRefGoogle Scholar
  46. Shin WH, Jeong HM, Kim BG, Kang JK, Choi JW (2012) Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity. Nano Lett 12(5):2283–2288CrossRefGoogle Scholar
  47. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854CrossRefGoogle Scholar
  48. Suenaga K, Johansson MP, Hellgren N, Broitman E, Wallenberg LR, Colliex C, Sundgren JE, Hultman L (1999) Carbon nitride nanotubulite-densely-packed and well-aligned tubular nanostructures. Chem Phys Lett 300(5):695–700CrossRefGoogle Scholar
  49. Takasu Y, Nakamura T, Ohkawauchi H, Murakami Y (1997) Dip-coated Ru-V oxide electrodes for electrochemical capacitors. J Electrochem Soc 144(8):2601–2606CrossRefGoogle Scholar
  50. Van Dommele S, Romero-Izquirdo A, Brydson R, De Jong KP, Bitter JH (2008) Tuning nitrogen functionalities in catalytically grown nitrogen-containing carbon nanotubes. Carbon 46(1):138–148CrossRefGoogle Scholar
  51. Yang L, Cheng S, Ding Y, Zhu X, Wang ZL, Liu M (2011) Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors. Nano Lett 12(1):321–325CrossRefGoogle Scholar
  52. Yin L-W, Bando Y, Li M-S, Liu Y-X, Qi Y-X (2003) Unique single-crystalline beta carbon nitride nanorods. Adv Mater 15(21):1840–1844CrossRefGoogle Scholar
  53. Yun YS, Park HH, Jin H-J (2012) Pseudocapacitive effects of N-doped carbon nanotube electrodes in supercapacitors. Materials 5(7):1258–1266CrossRefGoogle Scholar
  54. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531CrossRefGoogle Scholar
  55. Zhang H, Cao G, Wang Z, Yang Y, Shi Z, Gu Z (2008a) Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett 8(9):2664–2668CrossRefGoogle Scholar
  56. Zhang H, Cao G, Yang Y, Gu Z (2008b) Comparison between electrochemical properties of aligned carbon nanotube array and entangled carbon nanotube electrodes. J Electrochem Soc 155(2):19–22CrossRefGoogle Scholar
  57. Zhao X, Sánchez BM, Dobson PJ, Grant PS (2011) The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale 3(3):839–855CrossRefGoogle Scholar
  58. Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, Pirkle A, Wallace RM, Cychosz KA, Thommes M, Su D (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332(6037):1537–1541CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Alireza Mashayekhi
    • 1
  • Seyed Mahmoud Hosseini
    • 1
  • Morteza Hassanpour Amiri
    • 2
  • Naser Namdar
    • 2
  • Zeinab Sanaee
    • 1
    • 2
  1. 1.Nano-fabricated Energy Devices Laboratory, School of Electrical and Computer Engineering, College of EngineeringUniversity of TehranTehranIran
  2. 2.Thin Film and Nano-electronics Laboratory, Nano-electronics Centre of Excellence, School of Electrical and Computer Engineering, College of EngineeringUniversity of TehranTehranIran

Personalised recommendations