Skip to main content

Advertisement

Log in

Capping biological quantum dots with the peptide CLPFFD to increase stability and to reduce effects on cell viability

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Highly fluorescent nanoparticles, or quantum dots, have multiple applications in biology and biomedicine; however, in most cases, it is necessary to functionalize them to enhance their biocompatibility and selectivity. Generally, functionalization is performed after nanoparticle synthesis and involves the use of molecules or macromolecules having two important traits: specific biological activity and functional groups that facilitate nanoparticle capping (i.e. atom–atom interaction). For this reason, we carried out a simple protocol for the chemical synthesis of cadmium telluride quantum dots capped with glutathione, and we then functionalized these nanoparticles with the amphipathic peptide CLPFFD. This peptide attaches selectively to β-Amyloid fibres, which are involved in Alzheimer’s disease. Our results show that the optical properties of the quantum dots are not affected by functionalization with this peptide. Infrared spectra showed that cadmium telluride quantum dots were functionalized with the peptide CLPFFD. In addition, no significant differences were observed between the surface charge of the quantum dots with or without CLPFFD and the nanocrystal size calculated for HR-TEM was 4.2 nm. Finally, our results show that quantum dots with CLPFFD are stable and that they resulted in a significantly reduced cytotoxicity with respect to that induced by quantum dots not conjugated with the peptide. Moreover, the results show that the CLPFFD-functionalized nanoparticles bind to β-Amyloid fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adura C et al (2013) Stable conjugates of peptides with gold nanorods for biomedical applications with reduced effects on cell viability. ACS Appl Mater Interfaces 5:4076–4085. doi:10.1021/am3028537

    Google Scholar 

  • Araya E, Olmedo I, Bastus NG, Guerrero S, Puntes VF, Giralt E, Kogan MJ (2008) Gold Nanoparticles and microwave irradiation inhibit β-Amyloid amyloidogenesis. Nanoscale Res Lett 3:435–443. doi:10.1007/s11671-008-9178-5

    Article  Google Scholar 

  • Bang JH, Kamat PV (2009) Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano 3:1467–1476. doi:10.1021/nn900324q

    Article  Google Scholar 

  • Bieschke J, Siegel SJ, Fu Y, Kelly JW (2008) Alzheimer’s Aβ peptides containing an isostructural backbone mutation afford distinct aggregate morphologies but analogous cytotoxicity. Evidence for a common low-abundance toxic structure(s)? Biochemistry 47:50–59. doi:10.1021/bi701757v

    Article  Google Scholar 

  • Bradburne CE et al (2013) Cytotoxicity of quantum dots used for in vitro cellular labeling: role of qd surface ligand, delivery modality, cell type, and direct comparison to organic fluorophores. Bioconjug Chem 24:1570–1583. doi:10.1021/bc4001917

    Article  Google Scholar 

  • Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016. doi:10.1126/science.281.5385.2013

    Article  Google Scholar 

  • Califano M (2015) Origins of photoluminescence decay kinetics in CdTe colloidal quantum dots. ACS Nano 9:2960–2967. doi:10.1021/nn5070327

    Article  Google Scholar 

  • Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018. doi:10.1126/science.281.5385.2016

    Article  Google Scholar 

  • Díaz V et al (2012) Spectroscopic properties and biocompatibility studies of cdte quantum dots capped with biological thiols. Sci Adv Mater 4:609–618

    Article  Google Scholar 

  • Dumas EM, Ozenne V, Mielke RE, Nadeau JL (2009) Toxicity of CdTe quantum dots in bacterial strains. IEEE Trans Nanobiosci 8:56–64

    Article  Google Scholar 

  • Erbo Y, Dan L, Shaojun G, Shaojun D, Jin W (2008) Synthesis and bio-imaging application of highly luminescent mercaptosuccinic acid-coated CdTe nanocrystals. PLoS One 3:e2222–e2227

    Article  Google Scholar 

  • Fadel TR, Steevens JA, Thomas TA, Linkov I (2015) The challenges of nanotechnology risk management. Nano Today 10:6–10. doi:10.1016/j.nantod.2014.09.008

    Article  Google Scholar 

  • Faraon A, Englund D, Fushman I, Vučković J, Stoltz N, Petroff P (2007) Local quantum dot tuning on photonic crystal chips. Appl Phys Lett 90:213110. doi:10.1063/1.2742789

    Article  Google Scholar 

  • Guerrero S et al (2010) Improving the brain delivery of gold nanoparticles by conjugation with an amphipathic peptide. Nanomedicine 5:897–913. doi:10.2217/nnm.10.74

    Article  Google Scholar 

  • Guerrero S et al (2012) Synthesis and in vivo evaluation of the biodistribution of a 18F-labeled conjugate gold-nanoparticle-peptide with potential biomedical application. Bioconjug Chem 23:399–408. doi:10.1021/bc200362a

    Article  Google Scholar 

  • Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172. doi:10.1289/ehp.8284

    Article  Google Scholar 

  • Hoshino A et al (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169. doi:10.1021/nl048715d

    Article  Google Scholar 

  • Huang Y-Y et al. (2012) Can nanotechnology potentiate photodynamic therapy? vol 1. doi:10.1515/ntrev-2011-0005

  • Jameson LP, Smith NW, Dzyuba SV (2012) Dye-binding assays for evaluation of the effects of small molecule inhibitors on amyloid (Aβ) self-assembly. ACS Chem Neurosci 3:807–819. doi:10.1021/cn300076x

    Article  Google Scholar 

  • Kairdolf BA, Smith AM, Stokes TH, Wang MD, Young AN, Nie S (2013) Semiconductor quantum dots for bioimaging and biodiagnostic applications. Ann Rev Anal Chem 6:143–162. doi:10.1146/annurev-anchem-060908-155136

    Article  Google Scholar 

  • Kogan MJ et al (2006) Nanoparticle-mediated local and remote manipulation of protein aggregation. Nano Lett 6:110–115. doi:10.1021/nl0516862

    Article  Google Scholar 

  • Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV (2008) Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe–TiO2 architecture. J Am Chem Soc 130:4007–4015. doi:10.1021/ja0782706

    Article  Google Scholar 

  • Kuzyniak W et al (2014) Synthesis and characterization of quantum dots designed for biomedical use. Int J Pharm 466:382–389. doi:10.1016/j.ijpharm.2014.03.037

    Article  Google Scholar 

  • Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436. doi:10.1126/science.1083780

    Article  Google Scholar 

  • Let there be light (2015) Nat Mater 14:453. doi:10.1038/nmat4287

  • Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49

    Article  Google Scholar 

  • Lovrić J, Bazzi HS, Cuie Y, Fortin GRA, Winnik FM, Maysinger D (2005) Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 83:377–385

    Article  Google Scholar 

  • Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  Google Scholar 

  • Olmedo I et al (2008) How changes in the sequence of the peptide CLPFFD-NH2 can modify the conjugation and stability of gold nanoparticles and their affinity for β-amyloid fibrils. Bioconjug Chem 19:1154–1163. doi:10.1021/bc800016y

    Article  Google Scholar 

  • Osovsky R, Kloper V, Kolny-Olesiak J, Sashchiuk A, Efrat Lifshitz E (2007) Optical Properties of CdTe nanocrystal quantum dots, grown in the presence of Cd0 nanoparticles. J Physic Chem C 111:10841–10847

    Article  Google Scholar 

  • Patra S, Samanta A (2014) Effect of capping agent and medium on light-induced variation of the luminescence properties of CdTe quantum dots: a study based on fluorescence correlation spectroscopy, steady state and time-resolved fluorescence techniques. J Physic Chem C 118:18187–18196. doi:10.1021/jp5048216

    Article  Google Scholar 

  • Pérez-Donoso JM et al (2012) Biomimetic. Mild chemical synthesis of cdte-gsh quantum dots with improved biocompatibility PLoS One 7:e30741–e30749

    Google Scholar 

  • Ramirez-Maureira M, Vargas V, Riveros A, Goulet PJG, Osorio-Román IO (2015) Shell-isolated nanoparticle-enhanced fluorescence (SHINEF) of CdTe quantum dots. Mater Chem Phys 2:351–356

    Article  Google Scholar 

  • Smith AM, Nie S (2010) Semiconductor Nanocrystals: structure, properties, and band gap engineering. Acc Chem Res 43:190–200. doi:10.1021/ar9001069

    Article  Google Scholar 

  • Soto C, Kindy MS, Baumann M, Frangione B (1996) Inhibition of alzheimer’s amyloidosis by peptides that prevent β-sheet conformation. Biochem Biophys Res Commun 226:672–680. doi:10.1006/bbrc.1996.1413

    Article  Google Scholar 

  • Soto C, Sigurdsson EM, Morelli L, Asok Kumar R, Castano EM, Frangione B (1998) [beta]-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer’s therapy. Nat Med 4:822–826

    Article  Google Scholar 

  • Stewart S, Fredericks PM (1999) Surface-enhanced Raman spectroscopy of peptides and proteins adsorbed on an electrochemically prepared silver surface. Spectrochim Acta Part A Mol Biomol Spectrosc 55:1615–1640. doi:10.1016/S1386-1425(98)00293-5

    Article  Google Scholar 

  • Tokuraku K, Marquardt M, Ikezu T (2009) Real-time imaging and quantification of amyloid-β peptide aggregates by novel quantum-dot nanoprobes. PLoS One 4:e8492. doi:10.1371/journal.pone.0008492

    Article  Google Scholar 

  • Vera AM, Cárcamo JJ, Aliaga AE, Gómez-Jeria JS, Kogan MJ, Campos-Vallette MM (2015) Interaction of the CLPFFD peptide with gold nanospheres. A Raman, surface enhanced Raman scattering and theoretical study. Spectrochimica Acta Part A: Mol Biomol Spectrosc 134:251–256. doi:10.1016/j.saa.2014.06.116

    Article  Google Scholar 

  • Zhang L, Xu C, Li B (2009) Simple and sensitive detection method for chromium (VI) in water using glutathione-capped CdTe quantum dots as fluorescent probes. Microchim Acta 166:61–68

    Article  Google Scholar 

Download references

Acknowledgments

Financial support of this paper was provided by the FONDECYT 3130654; Fondap 15130011 and FONDECYT 1130425 Grants.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. L. Riveros, I. O. Osorio-Roman or M. J. Kogan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 366 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riveros, A.L., Astudillo, J., Vásquez, C.C. et al. Capping biological quantum dots with the peptide CLPFFD to increase stability and to reduce effects on cell viability. J Nanopart Res 18, 230 (2016). https://doi.org/10.1007/s11051-016-3463-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3463-5

Keywords

Navigation