Advertisement

Capping biological quantum dots with the peptide CLPFFD to increase stability and to reduce effects on cell viability

  • A. L. Riveros
  • J. Astudillo
  • C. C. Vásquez
  • Danilo H. Jara
  • Ariel R. Guerrero
  • F. Guzman
  • I. O. Osorio-Roman
  • M. J. Kogan
Research Paper

Abstract

Highly fluorescent nanoparticles, or quantum dots, have multiple applications in biology and biomedicine; however, in most cases, it is necessary to functionalize them to enhance their biocompatibility and selectivity. Generally, functionalization is performed after nanoparticle synthesis and involves the use of molecules or macromolecules having two important traits: specific biological activity and functional groups that facilitate nanoparticle capping (i.e. atom–atom interaction). For this reason, we carried out a simple protocol for the chemical synthesis of cadmium telluride quantum dots capped with glutathione, and we then functionalized these nanoparticles with the amphipathic peptide CLPFFD. This peptide attaches selectively to β-Amyloid fibres, which are involved in Alzheimer’s disease. Our results show that the optical properties of the quantum dots are not affected by functionalization with this peptide. Infrared spectra showed that cadmium telluride quantum dots were functionalized with the peptide CLPFFD. In addition, no significant differences were observed between the surface charge of the quantum dots with or without CLPFFD and the nanocrystal size calculated for HR-TEM was 4.2 nm. Finally, our results show that quantum dots with CLPFFD are stable and that they resulted in a significantly reduced cytotoxicity with respect to that induced by quantum dots not conjugated with the peptide. Moreover, the results show that the CLPFFD-functionalized nanoparticles bind to β-Amyloid fibres.

Keywords

Cadmium telluride quantum dots β-Amyloid fibres Peptide CLPFFD Cell viability 

Notes

Acknowledgments

Financial support of this paper was provided by the FONDECYT 3130654; Fondap 15130011 and FONDECYT 1130425 Grants.

Supplementary material

11051_2016_3463_MOESM1_ESM.pdf (367 kb)
Supplementary material 1 (PDF 366 kb)

References

  1. Adura C et al (2013) Stable conjugates of peptides with gold nanorods for biomedical applications with reduced effects on cell viability. ACS Appl Mater Interfaces 5:4076–4085. doi: 10.1021/am3028537 Google Scholar
  2. Araya E, Olmedo I, Bastus NG, Guerrero S, Puntes VF, Giralt E, Kogan MJ (2008) Gold Nanoparticles and microwave irradiation inhibit β-Amyloid amyloidogenesis. Nanoscale Res Lett 3:435–443. doi: 10.1007/s11671-008-9178-5 CrossRefGoogle Scholar
  3. Bang JH, Kamat PV (2009) Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe. ACS Nano 3:1467–1476. doi: 10.1021/nn900324q CrossRefGoogle Scholar
  4. Bieschke J, Siegel SJ, Fu Y, Kelly JW (2008) Alzheimer’s Aβ peptides containing an isostructural backbone mutation afford distinct aggregate morphologies but analogous cytotoxicity. Evidence for a common low-abundance toxic structure(s)? Biochemistry 47:50–59. doi: 10.1021/bi701757v CrossRefGoogle Scholar
  5. Bradburne CE et al (2013) Cytotoxicity of quantum dots used for in vitro cellular labeling: role of qd surface ligand, delivery modality, cell type, and direct comparison to organic fluorophores. Bioconjug Chem 24:1570–1583. doi: 10.1021/bc4001917 CrossRefGoogle Scholar
  6. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016. doi: 10.1126/science.281.5385.2013 CrossRefGoogle Scholar
  7. Califano M (2015) Origins of photoluminescence decay kinetics in CdTe colloidal quantum dots. ACS Nano 9:2960–2967. doi: 10.1021/nn5070327 CrossRefGoogle Scholar
  8. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018. doi: 10.1126/science.281.5385.2016 CrossRefGoogle Scholar
  9. Díaz V et al (2012) Spectroscopic properties and biocompatibility studies of cdte quantum dots capped with biological thiols. Sci Adv Mater 4:609–618CrossRefGoogle Scholar
  10. Dumas EM, Ozenne V, Mielke RE, Nadeau JL (2009) Toxicity of CdTe quantum dots in bacterial strains. IEEE Trans Nanobiosci 8:56–64CrossRefGoogle Scholar
  11. Erbo Y, Dan L, Shaojun G, Shaojun D, Jin W (2008) Synthesis and bio-imaging application of highly luminescent mercaptosuccinic acid-coated CdTe nanocrystals. PLoS One 3:e2222–e2227CrossRefGoogle Scholar
  12. Fadel TR, Steevens JA, Thomas TA, Linkov I (2015) The challenges of nanotechnology risk management. Nano Today 10:6–10. doi: 10.1016/j.nantod.2014.09.008 CrossRefGoogle Scholar
  13. Faraon A, Englund D, Fushman I, Vučković J, Stoltz N, Petroff P (2007) Local quantum dot tuning on photonic crystal chips. Appl Phys Lett 90:213110. doi: 10.1063/1.2742789 CrossRefGoogle Scholar
  14. Guerrero S et al (2010) Improving the brain delivery of gold nanoparticles by conjugation with an amphipathic peptide. Nanomedicine 5:897–913. doi: 10.2217/nnm.10.74 CrossRefGoogle Scholar
  15. Guerrero S et al (2012) Synthesis and in vivo evaluation of the biodistribution of a 18F-labeled conjugate gold-nanoparticle-peptide with potential biomedical application. Bioconjug Chem 23:399–408. doi: 10.1021/bc200362a CrossRefGoogle Scholar
  16. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172. doi: 10.1289/ehp.8284 CrossRefGoogle Scholar
  17. Hoshino A et al (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169. doi: 10.1021/nl048715d CrossRefGoogle Scholar
  18. Huang Y-Y et al. (2012) Can nanotechnology potentiate photodynamic therapy? vol 1. doi: 10.1515/ntrev-2011-0005
  19. Jameson LP, Smith NW, Dzyuba SV (2012) Dye-binding assays for evaluation of the effects of small molecule inhibitors on amyloid (Aβ) self-assembly. ACS Chem Neurosci 3:807–819. doi: 10.1021/cn300076x CrossRefGoogle Scholar
  20. Kairdolf BA, Smith AM, Stokes TH, Wang MD, Young AN, Nie S (2013) Semiconductor quantum dots for bioimaging and biodiagnostic applications. Ann Rev Anal Chem 6:143–162. doi: 10.1146/annurev-anchem-060908-155136 CrossRefGoogle Scholar
  21. Kogan MJ et al (2006) Nanoparticle-mediated local and remote manipulation of protein aggregation. Nano Lett 6:110–115. doi: 10.1021/nl0516862 CrossRefGoogle Scholar
  22. Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat PV (2008) Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe–TiO2 architecture. J Am Chem Soc 130:4007–4015. doi: 10.1021/ja0782706 CrossRefGoogle Scholar
  23. Kuzyniak W et al (2014) Synthesis and characterization of quantum dots designed for biomedical use. Int J Pharm 466:382–389. doi: 10.1016/j.ijpharm.2014.03.037 CrossRefGoogle Scholar
  24. Larson DR, Zipfel WR, Williams RM, Clark SW, Bruchez MP, Wise FW, Webb WW (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436. doi: 10.1126/science.1083780 CrossRefGoogle Scholar
  25. Let there be light (2015) Nat Mater 14:453. doi: 10.1038/nmat4287
  26. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49CrossRefGoogle Scholar
  27. Lovrić J, Bazzi HS, Cuie Y, Fortin GRA, Winnik FM, Maysinger D (2005) Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 83:377–385CrossRefGoogle Scholar
  28. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446CrossRefGoogle Scholar
  29. Olmedo I et al (2008) How changes in the sequence of the peptide CLPFFD-NH2 can modify the conjugation and stability of gold nanoparticles and their affinity for β-amyloid fibrils. Bioconjug Chem 19:1154–1163. doi: 10.1021/bc800016y CrossRefGoogle Scholar
  30. Osovsky R, Kloper V, Kolny-Olesiak J, Sashchiuk A, Efrat Lifshitz E (2007) Optical Properties of CdTe nanocrystal quantum dots, grown in the presence of Cd0 nanoparticles. J Physic Chem C 111:10841–10847CrossRefGoogle Scholar
  31. Patra S, Samanta A (2014) Effect of capping agent and medium on light-induced variation of the luminescence properties of CdTe quantum dots: a study based on fluorescence correlation spectroscopy, steady state and time-resolved fluorescence techniques. J Physic Chem C 118:18187–18196. doi: 10.1021/jp5048216 CrossRefGoogle Scholar
  32. Pérez-Donoso JM et al (2012) Biomimetic. Mild chemical synthesis of cdte-gsh quantum dots with improved biocompatibility PLoS One 7:e30741–e30749Google Scholar
  33. Ramirez-Maureira M, Vargas V, Riveros A, Goulet PJG, Osorio-Román IO (2015) Shell-isolated nanoparticle-enhanced fluorescence (SHINEF) of CdTe quantum dots. Mater Chem Phys 2:351–356CrossRefGoogle Scholar
  34. Smith AM, Nie S (2010) Semiconductor Nanocrystals: structure, properties, and band gap engineering. Acc Chem Res 43:190–200. doi: 10.1021/ar9001069 CrossRefGoogle Scholar
  35. Soto C, Kindy MS, Baumann M, Frangione B (1996) Inhibition of alzheimer’s amyloidosis by peptides that prevent β-sheet conformation. Biochem Biophys Res Commun 226:672–680. doi: 10.1006/bbrc.1996.1413 CrossRefGoogle Scholar
  36. Soto C, Sigurdsson EM, Morelli L, Asok Kumar R, Castano EM, Frangione B (1998) [beta]-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer’s therapy. Nat Med 4:822–826CrossRefGoogle Scholar
  37. Stewart S, Fredericks PM (1999) Surface-enhanced Raman spectroscopy of peptides and proteins adsorbed on an electrochemically prepared silver surface. Spectrochim Acta Part A Mol Biomol Spectrosc 55:1615–1640. doi: 10.1016/S1386-1425(98)00293-5 CrossRefGoogle Scholar
  38. Tokuraku K, Marquardt M, Ikezu T (2009) Real-time imaging and quantification of amyloid-β peptide aggregates by novel quantum-dot nanoprobes. PLoS One 4:e8492. doi: 10.1371/journal.pone.0008492 CrossRefGoogle Scholar
  39. Vera AM, Cárcamo JJ, Aliaga AE, Gómez-Jeria JS, Kogan MJ, Campos-Vallette MM (2015) Interaction of the CLPFFD peptide with gold nanospheres. A Raman, surface enhanced Raman scattering and theoretical study. Spectrochimica Acta Part A: Mol Biomol Spectrosc 134:251–256. doi: 10.1016/j.saa.2014.06.116 CrossRefGoogle Scholar
  40. Zhang L, Xu C, Li B (2009) Simple and sensitive detection method for chromium (VI) in water using glutathione-capped CdTe quantum dots as fluorescent probes. Microchim Acta 166:61–68CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
  2. 2.Advanced Center for Chronic DiseasesSantiagoChile
  3. 3.Facultad de Química y BiologíaUniversidad de Santiago de ChileSantiagoChile
  4. 4.Radiation Laboratory, Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameUSA
  5. 5.Núcleo de Biotecnología CuraumaPontificia Universidad Católica de ValparaísoValparaisoChile
  6. 6.Department of Chemistry and BiochemistryUniversity of WindsorWindsorCanada

Personalised recommendations