Advertisement

One-step synthesis of monodisperse AuNPs@PANI composite nanospheres as recyclable catalysts for 4-nitrophenol reduction

  • Runming Li
  • Zhiyuan Li
  • Qiang Wu
  • Dongfeng Li
  • Jiahua Shi
  • Yuewen Chen
  • Shuling Yu
  • Tao Ding
  • Congzhen Qiao
Research Paper

Abstract

Oxidative polymerization of aniline was carried out in ethanol using chloroauric acid (HAuCl4) as the oxidant. Simultaneous reduction of HAuCl4 and formation of gold nanoparticles (AuNPs) and polyaniline (PANI) composite nanospheres (AuNPs@PANI nanospheres) were achieved without using any templates or structure-directing agents. The composite nanospheres are uniformly distributed with an average diameter of about 400 nm, in which the ultrafine AuNPs with size of about 2–4 nm were evenly embedded in the PANI matrix which acted as the dispersing agent and stabilizer of AuNPs. In addition, the catalytic performance of these composite nanospheres towards the reduction of 4-nitrophenol in the presence of NaBH4 was studied. Furthermore, the possible formation mechanism and catalytic mechanism of the self-assembled AuNPs@PANI nanospheres were also discussed.

Graphical Abstract

Keywords

Polyaniline Nanospheres Gold nanoparticles Composites Catalytic performance Self-assembling 

Notes

Acknowledgments

This work was supported by Grants from the National Natural Science Foundation of China (Grant No. 21073054), Natural Science Foundation of Henan Province (Grant No. 102300410180), the Natural Science Foundation of the Education Department of Henan Province (Grant No. 0001F01124), Innovation Scientists and Technicians Troop Construction Projects of Henan Province (C20150011) and the Foundation for University Young Key Teacher by Henan Province (Grant No. 2009GGJS-021). We also thank Professor Suat Hong Goh, Hardy S. O. Chan and Chorng-Haur Sow at the National University of Singapore for their helpful discussions.

Supplementary material

11051_2016_3452_MOESM1_ESM.docx (538 kb)
Supplementary material 1 (DOCX 537 kb)

References

  1. Baker CO, Shedd B, Tseng RJ, Martinez-Morales AA, Ozkan CS, Ozkan M, Yang Y, Kaner RB (2011) Size control of gold nanoparticles grown on polyaniline nanofibers for bistable memory devices. ACS Nano 5:3469–3474CrossRefGoogle Scholar
  2. Carabineiroa SAC, Martinsb LMDRS, Avalos-Borja M, Buijnsters JG, Pombeiro AJL, Figueiredo JL (2013) Gold nanoparticles supported on carbon materials for cyclohexane oxidation with hydrogen peroxide. Appl Catal A 467:279–290CrossRefGoogle Scholar
  3. Choudhary T, Goodman D (2002) Oxidation catalysis by supported gold nano-clusters. Top Catal 21:25–34CrossRefGoogle Scholar
  4. Dong C, Li J, Cui P, Liu H, Yang J (2016) Gold-catalyzed formation of core–shell gold–palladium nanoparticles with palladium shells up to three atomic layers. J Mater Chem A 4:3813–3821CrossRefGoogle Scholar
  5. Dreaden EC, Alkilany AM, Huang X, Murphy C, El-Sayed M (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779CrossRefGoogle Scholar
  6. Dutt S, Siril PF, Sharma V, Periasamy S (2015) Goldcore–polyanilineshell composite nanowires as a substrate for surface enhanced Raman scattering and catalyst for dye reduction. New J Chem 39:902–908CrossRefGoogle Scholar
  7. Feng JJ, Li AQ, Lei Z, Wang AJ (2012) Low-potential synthesis of “clean” Au nanodendrites and their high performance toward ethanol oxidation. ACS Appl Mater Interfaces 4:2570–2576CrossRefGoogle Scholar
  8. Han J, Liu Y, Guo R (2009) Facile synthesis of highly stable gold nanoparticles and their unexpected excellent catalytic activity for Suzuki-Miyaura cross-coupling reaction in water. J Am Chem Soc 131:2060–2061CrossRefGoogle Scholar
  9. Han J, Li L, Guo R (2010) Novel approach to controllable synthesis of gold nanoparticles supported on polyaniline nanofibers. Macromolecules 43:10636–10644CrossRefGoogle Scholar
  10. Han J, Dai J, Li L, Fang P, Guo R (2011) Highly uniform self-assembled conducting polymer/gold fibrous nanocomposites: additive-free controllable synthesis and application as efficient recyclable catalysts. Langmuir 27:2181–2187CrossRefGoogle Scholar
  11. Han J, Fang P, Dai J, Guo R (2012) One-pot surfactantless route to polyaniline hollow nanospheres with incontinuous multicavities and application for the removal of lead ions from water. Langmuir 28:6468–6475CrossRefGoogle Scholar
  12. Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36:153–166CrossRefGoogle Scholar
  13. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem Lett 16:405–408CrossRefGoogle Scholar
  14. Huang K, Zhang Y, Long Y, Yuan J, Han D, Wang Z, Niu L, Chen Z (2006) Preparation of highly conductive, self-assembled gold/polyaniline nanocables and polyaniline nanotubes. Chem A 12:5314–5319Google Scholar
  15. Huang J, Vongehr S, Tang S, Lu H, Shen J, Meng X (2009) Ag dendrite-based Au/Ag bimetallic nanostructures with strongly enhanced catalytic activity. Langmuir 25:11890–11896CrossRefGoogle Scholar
  16. Huang YF, Park YI, Kuo C, Xu P, Williams DJ, Wang J, Lin CW, Wang HL (2012) Low-temperature synthesis of Au/polyaniline nanocomposites: toward controlled size, morphology, and size dispersity. J Phys Chem C 116:11272–11277CrossRefGoogle Scholar
  17. Ishida T, Aikawa S, Mise Y, Akebi R, Hamasaki A, Honma T, Ohashi H, Tsuji T, Yamamoto Y, Miyasaka M, Yokoyama T, Tokunaga M (2015) Direct C–H arene homocoupling over gold nanoparticles supported on metal oxides. ChemSusChem 8:695–701CrossRefGoogle Scholar
  18. Jiang HL, Akita T, Ishida T, Haruta M, Xu Q (2011) Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework. J Am Chem Soc 133:1304–1306CrossRefGoogle Scholar
  19. Joseph D, Tyagi N, Geckeler C, Geckeler KE (2014) Protein-coated pH-responsive gold nanoparticles: microwave-assisted synthesis and surface charge-dependent anticancer activity. Beilstein J Nanotechnol 5:1452–1462CrossRefGoogle Scholar
  20. Kang E, Neoh K, Tan K (1998) Polyaniline: a polymer with many interesting intrinsic redox states. Prog Polym Sci 23:277–324CrossRefGoogle Scholar
  21. Korotcenkov G, Brinzari V, Cho B (2016) Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review. Microchim Acta 183:1033–1054CrossRefGoogle Scholar
  22. Lam E, Hrapovic S, Majid E, Chong JH, Luong JH (2012) Catalysis using gold nanoparticles decorated on nanocrystalline cellulose. Nanoscale 4:997–1002CrossRefGoogle Scholar
  23. Laveille P, Guillois K, Tuel A, Petit C, Basset JM, Caps V (2016) Durable PROX catalyst based on gold nanoparticles and hydrophobic silica. Chem Commun 52:3179–3182CrossRefGoogle Scholar
  24. Li XG, Duan W, Huang MR, Yang YL (2001) Preparation and characterization of soluble terpolymers from m-phenylenediamine, o-anisidine, and 2,3-xylidine. J Polym Sci Part A 39:3989–4000CrossRefGoogle Scholar
  25. Li Y, Shi W, Chopra N (2016) Functionalization of multilayer carbon shell-encapsulated gold nanoparticles for surface-enhanced Raman scattering sensing and DNA immobilization. Carbon 100:165–177CrossRefGoogle Scholar
  26. Lin FH, Doong R-A (2011) Bifunctional Au-Fe3O4 heterostructures for magnetically recyclable catalysis of nitrophenol reduction. J Phys Chem C 115:6591–6598CrossRefGoogle Scholar
  27. Liu R, Mahurin SM, Li C, Unocic RR, Idrobo JC, Gao H, Pennycook SJ, Dai S (2011) Dopamine as a carbon source: the controlled synthesis of hollow carbon spheres and yolk-structured carbon nanocomposites. Angew Chem Int Ed 50:6799–6802CrossRefGoogle Scholar
  28. Liu G, Li Q, Ni W, Zhang N, Zheng X, Wang Y, Shao D, Tai G (2015) Cytotoxicity of various types of gold-mesoporous silica nanoparticles in human breast cancer cells. Int J Nanomed 10:6075–6087Google Scholar
  29. Lozano-Martín MC, Castillejos E, Bachiller-Baeza B, Rodríguez-Ramos I, Guerrero-Ruiz A (2015) Selective 1,3-butadiene hydrogenation by gold nanoparticles on novelnano-carbon materials. Catal Today 249:117–126CrossRefGoogle Scholar
  30. Luechinger NA, Athanassiou EK, Stark WJ (2008) Graphene-stabilized copper nanoparticles as an air-stable substitute for silver and gold in low-cost ink-jet printable electronics. Nanotechnology 19:445201CrossRefGoogle Scholar
  31. Maji S, Cesur B, Zhang Z, De Geest BG, Hoogenboom R (2016) Poly(N-isopropylacrylamide) coated gold nanoparticles as colourimetric temperature and salt sensors. Polym Chem 7:1705–1710CrossRefGoogle Scholar
  32. Nakashima D, Marken F, Oyama M (2013) Indirect modification of glassy carbon with gold nanoparticles using nonconducting support materials. Electroanalysis 25:975–982CrossRefGoogle Scholar
  33. Neoh K, Kang E, Tan K (1993) Protonation and deprotonation behaviour of amine units in polyaniline. Polymer 34:1630–1636CrossRefGoogle Scholar
  34. Padbury RP, Halbur JC, Krommenhoek PJ, Tracy JB, Jur JS (2015) Thermal stability of gold nanoparticles embedded within metal oxide frameworks fabricated by hybrid modifications onto sacrificial textile templates. Langmuir 31:1135–1141CrossRefGoogle Scholar
  35. Peng S, Lee Y, Wang C, Yin H, Dai S, Sun S (2008) A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation. Nano Res 1:229–234CrossRefGoogle Scholar
  36. Percebom AM, Giner-Casares JJ, Claes N, Bals S, Loh W, Luis M, Liz-Marza´n LM (2016) Janus gold nanoparticles obtained via spontaneous binary polymer shell segregation. Chem Commun 52:4278–4281CrossRefGoogle Scholar
  37. Qiao X, Liu X, Li X, Xing S (2015) Anchoring gold nanoparticles inside polyaniline shells with magnetic cores for the enhancement of catalytic stability. New J Chem 39:8588–8593CrossRefGoogle Scholar
  38. Quan X, Peng CW, Dong J, Zhou J (2016) Structural properties of polymer-brush-grafted gold nanoparticles at the oil–water interface: insights from coarse-grained simulations. Soft Matter 12:3352–3359CrossRefGoogle Scholar
  39. Rana D, Jamwal D, Katoch A, Thakur P, Kalia S (2016) Eicosyl ammoniums elicited thermal reduction alleyway towards gold nanoparticles and their chemo-sensor aptitude. Analyst 141:2208–2217CrossRefGoogle Scholar
  40. Schlicke H, Rebber M, Kunze S, Vossmeyer T (2016) Resistive pressure sensors based on freestanding membranes of gold nanoparticles. Nanoscale 8:183–186CrossRefGoogle Scholar
  41. Schürmann R, Bald I (2016) Decomposition of DNA nucleobases by laser irradiation of gold nanoparticles monitored by surface-enhanced Raman scattering. J Phys Chem C 120:3001–3009CrossRefGoogle Scholar
  42. Shi J, Wu Q, Li R, Zhu Y, Qin Y, Qiao C (2013) The pH-controlled morphology transition of polyaniline from nanofibers to nanospheres. Nanotechnology 24:175602CrossRefGoogle Scholar
  43. Shiigi H, Yamamoto Y, Yoshi N, Nakao H, Nagaoka T (2006) One-step preparation of positively-charged gold nanoraspberry. Chem Commun 41:4288–4290CrossRefGoogle Scholar
  44. Shin HS, Huh S (2012) Au/Au@polythiophene core/shell nanospheres for heterogeneous catalysis of nitroarenes. ACS Appl Mater Interfaces 4:6324–6331CrossRefGoogle Scholar
  45. Simenyuk GY, Zakharov YA, Pavelko NV, Dodonov VG, Pugachev VM, Puzynin AV, Manina TS, Barnakov CN, Ismagilov ZR (2015) Highly porous carbon materials filled with gold and manganese oxidenanoparticles for electrochemical use. Catal Today 249:220–227CrossRefGoogle Scholar
  46. Stejskal J, Sapurina I, Trchová M, Konyushenko EN (2008) Oxidation of aniline: polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules 41:3530–3536CrossRefGoogle Scholar
  47. Tokonami S, Morita N, Takasaki K, Toshima N (2010) Novel synthesis, structure, and oxidation catalysis of Ag/Au bimetallic nanoparticles. J Phys Chem C 114:10336–10341CrossRefGoogle Scholar
  48. Tseng RJ, Huang J, Ouyang J, Kaner RB, Yang Y (2005) Polyaniline nanofiber/gold nanoparticle nonvolatile memory. Nano Lett 5:1077–1080CrossRefGoogle Scholar
  49. Tsunoyama H, Ichikuni N, Sakurai H, Tsukuda T (2009) Effect of electronic structures of Au clusters stabilized by poly (N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. J Am Chem Soc 131:7086–7093CrossRefGoogle Scholar
  50. Wang Y, Van de Vyver S, Sharma KK, Román-Leshkov Y (2014) Insights into the stability of gold nanoparticles supported on metal oxides for the base-free oxidation of glucose to gluconic acid. Green Chem 16:719–726CrossRefGoogle Scholar
  51. Wang S, Xin X, Zhang H, Shen J, Zheng Y, Song Z, Yang Y (2016) Stable monodisperse colloidal spherical gold nanoparticles formed by an imidazolium gemini surfactant-based water-in-oil microemulsion with excellent catalytic performance. RSC Adv 6:28156–28164CrossRefGoogle Scholar
  52. Wei H, Lu Y (2012) Catalysis of gold nanoparticles within lysozyme single crystals. Chem Asian J 7:680–683CrossRefGoogle Scholar
  53. Wu S, Dzubiella J, Kaiser J, Drechsler M, Guo X, Ballauff M, Lu Y (2012) Thermosensitive Au-PNIPA yolk-shell nanoparticles with tunable selectivity for catalysis. Angew Chem Int Ed 51:2229–2233CrossRefGoogle Scholar
  54. Xiang Q, Zhu X, Chen Y, Duan H (2016) Surface enhanced Raman scattering of gold nanoparticles supported on copper foil with graphene as a nanometer gap. Nanotechnology 27:075201CrossRefGoogle Scholar
  55. Xie HN, Lin Y, Mazo M, Chiappini C, Sánchez-Iglesias A, Liz-Marzán LM, Stevens MM (2014) Identification of intracellular gold nanoparticles using surface-enhanced Raman scattering. Nanoscale 6:12403–12407CrossRefGoogle Scholar
  56. Xu X, Liu X, Yu Q, Wang W, Xing S (2012) Architecture-adapted raspberry-like gold@polyaniline particles: facile synthesis and catalytic activity. Colloid Polym Sci 290:1759–1764CrossRefGoogle Scholar
  57. Yu J, Xu D, Guan HN, Wang C, Huang LK, Chi DF (2016) Facile one-step green synthesis of gold nanoparticles using Citrus maxima aqueous extracts and its catalytic activity. Mater Lett 166:110–112CrossRefGoogle Scholar
  58. Zhang B, Zhao B, Huang S, Zhang R, Xu P, Wang HL (2012) One-pot interfacial synthesis of Au nanoparticles and Au–polyaniline nanocomposites for catalytic applications. CrystEngComm 14:1542–1544CrossRefGoogle Scholar
  59. Zhang J, Li C, Zhang X, Huo S, Jin S, An FF, Wang X, Xue X, Okeke CI, Duan G, Guo F, Zhang X, Hao J, Wang PC, Zhang J, Liang XJ (2015) In vivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles. Biomaterials 42:103–111CrossRefGoogle Scholar
  60. Zhang Z, Jiang Y, Chi M, Yang Z, Nie G, Xiaofeng L, Wang C (2016) Fabrication of Au nanoparticles supported on CoFe2O4 nanotubes by polyaniline assisted self-assembly strategy and their magnetically recoverable catalytic properties. Appl Surf Sci 363:578–585CrossRefGoogle Scholar
  61. Zhao G, Xin-Ping W, Chai R, Zhang Q, Gong X, Huang J, Yong L (2015) Tailoring nano-catalysts: turning gold nanoparticles on bulk metal oxides to inverse nano-metal oxides on large gold particles. Chem Commun 51:5975–5978CrossRefGoogle Scholar
  62. Zyuzin MV, Honold T, Carregal-Romero S, Kantner K, Karg M, Parak WJ (2016) Influence of temperature on the colloidal stability of polymer-coated gold nanoparticles in cell culture media. Small 12:1723–1731CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute of Fine Chemical and Engineering, Engineering Laboratory for Flame Retardant and Functional Materials of Henan Province, College of Chemistry and Chemical EngineeringHenan UniversityKaifengChina

Personalised recommendations