Skip to main content
Log in

Development of novel FePt/nanodiamond hybrid nanostructures: L10 phase size-growth suppression and magnetic properties

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A new type of hybrid nanomaterial composed of magnetic FePt nanoparticles grown on the surface of nanodiamond nanotemplate assemblies is described for the first time. Post annealing in vacuum of the as-made nanomaterial bearing cubic A1 soft magnetic FePt nanoparticles leads to the development of FePt nanoparticles with tetragonal L10 hard, magnetic-phase characteristics, leaving untouched the nanodiamond nanotemplate assemblies. X-ray diffraction, high-resolution transmission electron microscopy including chemical mapping (HRTEM/HAADF), magnetization measurements, and 57Fe Mössbauer spectroscopy data show that the magnetic FePt nanoparticles, with average sizes of 3 and 8 nm in the as-made and annealed hybrids, respectively, are homogenously distributed within the nanodiamond template in both nanomaterials. As a consequence, their structural, morphological, and magnetic properties differ significantly from the corresponding properties of the nonsupported (free) as-made and annealed FePt nanoparticles with average sizes of 6 and 32 nm, respectively, developed by the same methods. This spatial isolation suppresses the size-growth of the FePt nanoparticles during the post-annealing procedure, triggering superparamagnetic relaxation phenomena, which are exposed as a combination of hard and soft magnetic-phase characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad RK, Parada AC, Jackman RB (2011) Nanodiamond-gated silicon ion-sensitive field effect transistor. Appl Phys Lett 98:153507. doi:10.1063/1.3568887

    Article  Google Scholar 

  • Bourlinos AB, Panagiotopoulos I, Niarchos D, Petridis D (2004) Hydrophilic Co-Pt alloy nanoparticles: synthesis, characterization, and perspectives. J Mater Res 19:1227–1233. doi:10.1557/JMR.2004.0159

    Article  Google Scholar 

  • Bourlinos AB et al (2011) Fabrication of fluorescent nanodiamond@C core-shell hybrids via mild carbonization of sodium cholate-nanodiamond complexes. J Mater Sci 46:7912–7916. doi:10.1007/s10853-011-5911-z

    Article  Google Scholar 

  • Branson BT, Beauchamp PS, Beam JC, Lukehart CM, Davidson JL (2013) Nanodiamond Nanofluids for Enhanced Thermal Conductivity. ACS Nano 7:3183–3189. doi:10.1021/nn305664x

    Article  Google Scholar 

  • Buzug TM, Borgert J, Knopp T, Biederer S, Sattel TF, Erbe M, Lüdtke-Buzug K (2010) Magnetic Nanoparticles: Particle Science, Imaging Technology, and Clinical Applications. World Scientific Publishing, Singapore

    Book  Google Scholar 

  • Chen M, Liu JP, Sun S (2004) One-step synthesis of FePt nanoparticles with tunable size. J Am Chem Soc 126:8394–8395. doi:10.1021/ja047648m

    Article  Google Scholar 

  • Chen M, Pierstorff ED, Lam R, Li SY, Huang H, Osawa E, Ho D (2009) Nanodiamond-mediated delivery of water-insoluble therapeutics. ACS Nano 3:2016–2022. doi:10.1021/nn900480m

    Article  Google Scholar 

  • Cheng LC et al (2013) Targeting polymeric fluorescent nanodiamond-gold/silver multi-functional nanoparticles as a light-transforming hyperthermia reagent for cancer cells. Nanoscale 5:3931–3940. doi:10.1039/c3nr34091k

    Article  Google Scholar 

  • Chepulskii RV, Butler WH (2005) Temperature and particle-size dependence of the equilibrium order parameter of FePt alloys. Phys Rev B 72:134205. doi:10.1103/PhysRevB.72.134205

    Article  Google Scholar 

  • Chepulskii RV, Butler WH, van der Walle A, Curtarolo S (2010) Surface segregation in nanoparticles from first principles: the case of FePt. Scr Mater 62:179–182. doi:10.1016/j.scriptamat.2009.10.019

    Article  Google Scholar 

  • Colak L, Hadjipanayis GC (2009) Chemically synthesized FePt nanoparticles with controlled particle size, shape and composition. Nanotechnology 20(48):485602. doi:10.1088/0957-4484/20/48/485602

    Article  Google Scholar 

  • Cullity BD (1956) Elements of X-ray Diffraction. Addison-Wesley, Massachusetts

    Google Scholar 

  • Cullity BD, Graham CD (2009) Introduction to Magnetic Materials. Wiley, Hoboken

    Google Scholar 

  • Danilenko VV (2004) On the history of the discovery of nanodiamond synthesis. Phys Solid State 46:595–599

    Article  Google Scholar 

  • Dormann JL, Fiorani D, Tronc E (1997) Magnetic relaxation in fine-particle systems. Adv Chem Phys 98:283–494

    Google Scholar 

  • Douvalis AP, Polymeros A, Bakas T (2010) IMSG09: a 57Fe-119Sn Mössbauer spectra computer fitting program with novel interactive user interface. J Phys 217:012014

    Google Scholar 

  • Douvalis AP, Zboril R, Bourlinos AB, Tucek J, Spyridi S, Bakas T (2012) A facile synthetic route toward air-stable magnetic nanoalloys with Fe-Ni/Fe-Co core and iron oxide shell. J Nanopart Res 14:1130. doi:10.1007/s11051-012-1130-z

    Article  Google Scholar 

  • Fiorani D (2005) Surface effects in magnetic nanoparticles. Springer, New York

    Book  Google Scholar 

  • Frey NA, Peng S, Cheng K, Sun S (2009) Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev 38:2532–2542. doi:10.1039/b815548h

    Article  Google Scholar 

  • Ganesh P, Kent PRC, Mochalin V (2011) Formation, characterization, and dynamics of onion-like carbon structures for electrical energy storage from nanodiamonds using reactive force fields. J Appl Phys 110:073506. doi:10.1063/1.3641984

    Article  Google Scholar 

  • Goto T, Utsugi H, Watanabe K (1990) Mössbauer study of permanent magnets Fe-Pt. Hyperfine Interact 54:539–544

    Article  Google Scholar 

  • Greenwood NN, Gibb TC (1971) Mössbauer spectroscopy. Chapman and Hall Ltd, London

    Book  Google Scholar 

  • Gubin SP (2009) Magnetic Nanoparticles. Wiley, Weinheim

    Book  Google Scholar 

  • Guo S, Sun S (2012) FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. J Am Chem Soc 134:2492–2495. doi:10.1021/ja2104334

    Article  Google Scholar 

  • Ho D (2010) Nanodiamonds: applications in biology and nanoscale medicine. Springer, New York

    Book  Google Scholar 

  • Hoinville J et al (2003) High density magnetic recording on protein-derived nanoparticles. J Appl Phys 93:7187–7189. doi:10.1063/1.1555896

    Article  Google Scholar 

  • Hsu SH, Kang WP, Davidson JL, Huang JH, Kerns DV (2013) Nanodiamond vacuum field emission integrated differential amplifier. IEEE Trans Electron Devices 60:487–493. doi:10.1109/TED.2012.2228485

    Article  Google Scholar 

  • Hu Q et al (2012) Self-assembly of colloidal γ-Fe2O3 and FePt nanoparticles on carbon nanotubes by dip-coating process. J Nanosci Nanotechnol 12:1709–1712. doi:10.1166/jnn.2012.4684

    Article  Google Scholar 

  • Hu XC, Agostinelli E, Ni C, Hadjipanayis GC, Capobianchi A (2014) A low temperature and solvent-free direct chemical synthesis of L1 0 FePt nanoparticles with size tailoring. Green Chem 16:2292–2297. doi:10.1039/c3gc42186d

    Article  Google Scholar 

  • In PC, Kuo CH, Chiang CS (2008) Preparation of fluorescent magnetic nanodiamonds and cellular imaging. J Am Chem Soc 130:15476–15481. doi:10.1021/ja804253y

    Article  Google Scholar 

  • Kavan L (2014) Exploiting nanocarbons in dye-sensitized solar cells. Top Curr Chem 348:53–94. doi:10.1007/128-2013-447

    Article  Google Scholar 

  • Kockrick E, Krawiec P, Schnelle W, Geiger D, Schappacher FM, Pöttgen R, Kaskel S (2007) Space-confined formation of fept nanoparticles in ordered mesoporous silica SBA-15. Adv Mater 19:3021–3026. doi:10.1002/adma.200601367

    Article  Google Scholar 

  • Kostopoulou A et al (2014) Assembly-mediated interplay of dipolar interactions and surface spin disorder in colloidal maghemite nanoclusters. Nanoscale 6:3764–3776. doi:10.1039/c3nr06103e

    Article  Google Scholar 

  • Kumar A, Ann Lin P, Xue A, Hao B, Khin Yap Y, Sankaran RM (2013) Formation of nanodiamonds at near-ambient conditions via microplasma dissociation of ethanol vapour. Nat Commun 4:2618. doi:10.1038/ncomms3618

    Google Scholar 

  • La-Torre-Riveros L, Abel-Tatis E, Méndez-Torres AE, Tryk DA, Prelas M, Cabrera CR (2011) Synthesis of platinum and platinum-ruthenium-modified diamond nanoparticles. J Nanopart Res 13:2997–3009. doi:10.1007/s11051-010-0196-8

    Article  Google Scholar 

  • Lewis RS, Ming T, Wacker JF, Anders E, Steel E (1987) Interstellar diamonds in meteorites. Nature 326:160–162

    Article  Google Scholar 

  • Lin CR, Wei DH, Bendao MK, Chang HM, Chen WE, Lee JA (2014) Effects of surface modification of nanodiamond particles for nucleation enhancement during its film growth by microwave plasma jet chemical vapour deposition technique. Adv Mater Sci Eng 2014:937159. doi:10.1155/2014/937159

    Google Scholar 

  • Liu YL, Sun KW (2011) Plasmon-enhanced photoluminescence from bioconjugated gold nanoparticle and nanodiamond assembly. Appl Phys Lett 98:153702. doi:10.1063/1.3576852

    Article  Google Scholar 

  • Liu H et al (2014a) A nanodiamond/CNT-SiC monolith as a novel metal free catalyst for ethylbenzene direct dehydrogenation to styrene. Chem Commun 50:7810–7812. doi:10.1039/c4cc01693a

    Article  Google Scholar 

  • Liu Y et al (2014b) Structural and magnetic properties of the ordered FePt3, FePt and Fe3Pt nanoparticles. J Solid State Chem 209:69–73. doi:10.1016/j.jssc.2013.10.027

    Article  Google Scholar 

  • Lyubina J, Rellinghaus B, Gutfleisch O, Albrecht M (2011) Structure and Magnetic Properties of L10-Ordered Fe–Pt Alloys and Nanoparticles. In: Buschow KHJ (ed) Handbook of Magnetic Materials, vol 19. Elsevier, Oxford, pp 291–407

    Google Scholar 

  • Manus LM et al (2010) Gd(III)-nanodiamond conjugates for MRI contrast enhancement. Nano Lett 10:484–489. doi:10.1021/nl903264h

    Article  Google Scholar 

  • Mermoux M, Crisci A, Petit T, Girard HA, Arnault JC (2014) Surface modifications of detonation nanodiamonds probed by multiwavelength raman spectroscopy. J Phys Chem C 118:23415–23425. doi:10.1021/jp507377z

    Article  Google Scholar 

  • Miyazaki T et al (2005) Size effect on the ordering of L10 FePt nanoparticles. Phys Rev B 72:144419

    Article  Google Scholar 

  • Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2011) The properties and applications of nanodiamonds. Nat Nanotechnol 7:11–23. doi:10.1038/nnano.2011.209

    Article  Google Scholar 

  • Mørup S (1983) Magnetic hyperfine splitting in Mössbauer spectra of microcrystals. J Magn Magn Mater 37:39

    Article  Google Scholar 

  • Mørup S (1990) Mössbauer effect in small particles. Hyperfine Interact 60:959

    Article  Google Scholar 

  • Mørup S, Hansen M (2007) Superparamagnetic Particles. In: Kronmüller H, Parkin S (eds) Handbook of magnetism and advanced magnetic materials, novel materials. Wiley, Chichester

    Google Scholar 

  • Nekhaev AI, Bagrii EI, Maximov AL (2011) Petroleum nanodiamonds: new in diamondoid naphthenes. Pet Chem 51:86–95. doi:10.1134/S0965544111020095

    Article  Google Scholar 

  • Paci JT, Man HB, Saha B, Ho D, Schatz GC (2013) Understanding the surfaces of nanodiamonds. J Phys Chem C 117:17256–17267. doi:10.1021/jp404311a

    Article  Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D 36:R167–R181

    Article  Google Scholar 

  • Papagiannouli I, Bourlinos AB, Bakandritsos A, Couris S (2014) Nonlinear optical properties of colloidal carbon nanoparticles: nanodiamonds and carbon dots. RSC Adv 4:40152–40160. doi:10.1039/c4ra04714a

    Article  Google Scholar 

  • Ram MK, Gomez H, Alvi F, Stefanakos E, Goswami Y, Kumar A (2011) Novel nanohybrid structured regioregular polyhexylthiophene blend films for photoelectrochemical energy applications. J Phys Chem C 115:21987–21995. doi:10.1021/jp205297n

    Article  Google Scholar 

  • Raty JY, Galli G, Bostedt C, Van Buuren TW, Terminello LJ (2003) Quantum confinement and fullerenelike surface reconstructions in nanodiamonds. Physical Review Letters 90:037401/037401–037401/037404

    Article  Google Scholar 

  • Rong CB et al (2006) Size-dependent chemical and magnetic ordering in L10-FePt nanoparticles. Adv Mater 18:2984–2988. doi:10.1002/adma.200601904

    Article  Google Scholar 

  • Shenderova OA, Gruen DM (2012) Ultrananocrystalline diamond: synthesis, properties and applications, 2nd edn. Elsevier, Oxford

    Google Scholar 

  • Shiryaev AA, Fisenko AV, Vlasov II, Semjonova LF, Nagel P, Schuppler S (2011) Spectroscopic study of impurities and associated defects in nanodiamonds from Efremovka (CV3) and Orgueil (CI) meteorites. Geochim Cosmochim Acta 75:3155–3165. doi:10.1016/j.gca.2011.03.004

    Article  Google Scholar 

  • Spada FE, Parker FT, Platt CL, Howard JK (2003) X-ray diffraction and Mössbauer studies of structural changes and L10 ordering kinetics during annealing of polycrystalline Fe51Pt49 thin films. J Appl Phys 94:5123–5134. doi:10.1063/1.1606522

    Article  Google Scholar 

  • Su Z, Zhou W, Zhang Y (2011) New insight into the soot nanoparticles in a candle flame. Chem Commun 47:4700–4702. doi:10.1039/c0cc05785a

    Article  Google Scholar 

  • Subramanian K, Kang WP, Davidson JL, Choi BK, Howell M (2006) Nanodiamond lateral comb array field emission diode for high current applications. Diam Relat Mater 15:1994–1997. doi:10.1016/j.diamond.2006.09.016

    Article  Google Scholar 

  • Sun S (2006) Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv Mater 18:393–403. doi:10.1002/adma.200501464

    Article  Google Scholar 

  • Sundar LS, Singh MK, Ramana EV, Singh B, Grácio J, Sousa ACM (2014) Enhanced Thermal Conductivity and Viscosity of Nanodiamond-Nickel Nanocomposite Nanofluids. Sci Rep 4:4039. doi:10.1038/srep04039

    Article  Google Scholar 

  • Taha-Tijerina JJ, Narayanan TN, Tiwary CS, Lozano K, Chipara M, Ajayan PM (2014) Nanodiamond-Based Thermal Fluids. ACS Appl Mater Interfaces 6:4778–4785. doi:10.1021/am405575t

    Article  Google Scholar 

  • Takahashi YK, Koyama T, Ohnuma M, Ohkubo T, Mono K (2004) Size dependence of ordering in FePt nanoparticles. J Appl Phys 95:2690–2696. doi:10.1063/1.1643187

    Article  Google Scholar 

  • Thanh NTK (2012) Magnetic nanoparticles: from fabrication to clinical applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Tsoufis T et al (2008) Novel nanohybrids derived from the attachment of FePt nanoparticles on carbon nanotubes. J Nanosci Nanotechnol 8:5942–5951

    Article  Google Scholar 

  • Tsoufis T, Douvalis AP, Lekka CE, Trikalitis PN, Bakas T, Gournis D (2013) Controlled preparation of carbon nanotube–iron oxide nanoparticle hybrid materials by a modified wet impregnation method. J Nanopart Res 15:1924–1927

    Article  Google Scholar 

  • Vargas JM, Zysler RD, Socolovsky LM, Knobel M, Zanchet D (2007) Size dependence on the ordering process in colloidal FePt nanoparticles. J Appl Phys 101:023903. doi:10.1063/1.2409620

    Article  Google Scholar 

  • Vul’ A, Shenderova O (2013) Detonation Nanodiamonds: Science and Applications. CRC Press, Boca Raton

    Google Scholar 

  • Wang HL, Huang Y, Zhang Y, Hadjipanayis GC, Weller D, Simopoulos A (2007) Effects of annealing on the magnetic and structural properties of FePt nanoparticles prepared by chemical synthesis. J Magn Magn Mater 310:22–27

    Article  Google Scholar 

  • Wang Y, Gao L, Sun J, Liu Y (2009) Synthesis and characterization of FePt nanoparticle/single walled carbon nanotube composites. Mater Sci Forum 620–622:505–508. doi:10.4028/www.scientific.net/MSF.620-622.505

    Article  Google Scholar 

  • Wang Y, Jaiswal M, Lin M, Saha S, Özyilmaz B, Loh KP (2012) Electronic properties of nanodiamond decorated graphene. ACS Nano 6:1018–1025. doi:10.1021/nn204362p

    Article  Google Scholar 

  • Wang DH, Fillery SP, Durstock MF, Dai LM, Vaia RA, Tan LS (2013) Nanodiamond/polyimide high temperature dielectric films for energy storage applications. Adv Mater Res 785–786:410–416. doi:10.4028/www.scientific.net/AMR.785-786.410

    Google Scholar 

  • Williams OA (2011) Nanocrystalline diamond. Diam Relat Mater 20:621–640. doi:10.1016/j.diamond.2011.02.015

    Article  Google Scholar 

  • Williams O (2014) Nanodiamond. RSC Nanoscience & Nanotechnology, vol 31. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Yang B, Asta M, Mryasov ON, Klemmer TJ, Chantrell RW (2005) Equilibrium Monte Carlo simulations of A1–L10 ordering in FePt nanoparticles. Scr Mater 53:417–422

    Article  Google Scholar 

  • Yang B, Asta M, Mryasov ON, Klemmer TJ, Chantrell RW (2006) The nature of A1–L10 ordering transitions in alloy nanoparticles: a Monte Carlo study. Acta Mater 54:4201–4211

    Article  Google Scholar 

  • Zeng H, Li J, Liu JP, Wang ZL, Sun S (2002) Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420:395–398. doi:10.1038/nature01208

    Article  Google Scholar 

  • Zhang YJ et al (2011) A novel approach to the synthesis of CoPt magnetic nanoparticles. J Phys D 44:295003. doi:10.1088/0022-3727/44/29/295003

    Article  Google Scholar 

  • Zhao L et al (2014) Platinum on nanodiamond: a promising prodrug conjugated with stealth polyglycerol, targeting peptide and acid-responsive antitumor drug. Adv Funct Mater 24:5348–5357. doi:10.1002/adfm.201304298

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from the Ministry of Education, Youth and Sports of the Czech Republic (LO1305). The authors also acknowledge the assistance provided by the Research Infrastructure NanoEnviCz, supported by the Ministry of Education, Youth and Sports of the Czech Republic under Project No. LM2015073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Douvalis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11051_2016_3424_MOESM1_ESM.docx

Additional TEM images of the as-made and annealed free FePt and hybrid FePt/NDs samples; ZFC and FC magnetic susceptibility versus temperature measurements of all samples under an applied magnetic field of 0.10 T (DOCX 1390 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Douvalis, A.P., Bourlinos, A.B., Tucek, J. et al. Development of novel FePt/nanodiamond hybrid nanostructures: L10 phase size-growth suppression and magnetic properties. J Nanopart Res 18, 115 (2016). https://doi.org/10.1007/s11051-016-3424-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3424-z

Keywords

Navigation