Detection of Salmonella typhi utilizing bioconjugated fluorescent polymeric nanoparticles

  • Swati Jain
  • Sruti Chattopadhyay
  • Richa Jackeray
  • Zainul Abid
  • Harpal Singh
Research Paper


Present work demonstrates effective utilization of functionalized polymeric fluorescent nanoparticles as biosensing probe for the detection of Salmonella typhi bacteria on modified polycarbonate (PC) filters in about 3 h. Antibody modified-PC membranes were incubated with contaminated bacterial water for selective capturing which were detected by synthesized novel bioconjugate probe. Core–shell architecture of polymeric nanoparticles endows them with aqueous stabilization and keto-enolic functionalities making them usable for covalently linking S. typhi antibodies without any crosslinker or activator. Bradford analysis revealed that one nanoparticle has an average of 3.51 × 10−19 g or 21 × 104 bound S. typhi Ab molecules. Analysis of the regions of interest (ROI) in fluorescent micrographs of modified fluoroimmunoassay showed higher detection sensitivity of 5 × 102 cells/mL due to signal amplification unlike conventional naked dye FITC-Ab conjugate. Fluorescence of pyrene dye remained same on immobilization of biomolecules and nanoparticles showed stable fluorescent intensity under prolong exposure to laser owing to protective polymeric layer allowing accurate identification of bacteria. Surface-functionalized PC matrix and fluorescent label NPs permit covalent interactions among biomolecules enhancing signal acquisitions showing higher detection efficiency as compared to conventional microtiter plate-based system. Our novel immunoassay has the potential to be explored as rapid detection method for identifying S. typhi contaminations in water.

Graphical Abstract


Fluoroimmunoassay Fluorescent nanoparticles Salmonella typhi ELISA Detection Bioconjugation Health safety 



Fluorescent polymeric nanoparticles




Acetoacetoxy ethyl methacrylate

S. typhi

Salmonella typhi







This work was supported by Department of Biotechnology (DBT), Govt. of India; authors duly acknowledge their generous financial support. The authors are also thankful to CSIR-UGC and ICMR, India for their research fellowships.

Supplementary material

11051_2016_3414_MOESM1_ESM.tif (44 kb)
Supplementary material 1 (TIFF 44 kb) Fig. S1−ATR-FTIR spectra of FPNP-S. typhi Ab conjugate.


  1. Abdel-Hamid I, Ghindilis AL, Atanasov P, Wilkins E (1998) Development of a flow-through immunoassay system. Sens Actuat B 49:202–210CrossRefGoogle Scholar
  2. Allmer K, Huly A, Runby B (1989) Surface modification of polymers. III. Grafting of stabilizers onto polymer films. J Polym Sci Part A 27:3405–3417CrossRefGoogle Scholar
  3. Bagwe RP, Hilliard LR, Tan W (2006) Surface modification of silica nanoparticles to reduce aggregation and non-specific binding. Langmuir 25:4357–4362CrossRefGoogle Scholar
  4. Chen CS, Durst RA (2006) Simultaneous detection of Escherichia Coli and O157:H7, Salmonella spp. and Listeria monocytogenes with an array-based immunosorbent assay using universal protein G liposomal nanovesicles. Talanta 69:232–238CrossRefGoogle Scholar
  5. Chen L, Zhang J (2012) Bioconjugated magnetic nanoparticles for rapid capture of gram-positive Bacteria. J Biosens Bioelectrons 11:005Google Scholar
  6. Cheng CM, Martinez A, Gong J, Mace CR, Phillips ST, Carrilho E, Mirica K, Whitesides G (2010) Paper-based ELISA. Angew Chem Int Ed 49:4771–4774CrossRefGoogle Scholar
  7. Chumyim P, Rijiravanich P, Somasundrum M, Surareungchai W (2014) Detection of Salmonella enterica serovar Typhimurium in milk sample using electrochemical immunoassay and enzyme amplified labeling. Int Conf Agric Environ Biol Sci 24–25 PhukeGoogle Scholar
  8. Gruber HJ, Hahn CD, Kada G, Riener CK, Harms GS, Ahrer W, Dax TG, Knaus HG (2000) Anomalous fluorescence enhancement of Cy3 and Cy3.5 versus anomalous fluorescence loss of Cy5 and Cy7 upon covalent linking to IgG and noncovalent binding to avidin. Bioconjugate Chem 11:696–704CrossRefGoogle Scholar
  9. Harma H, Pelkkikangas A, Soukka T, Huhtinen P, Huopalahti S, Lovgern T (2003) Sensitive miniature single-particle immunoassay of prostate-specific antigen using time-resolved fluorescence. Anal Chim Acta 482:157–164CrossRefGoogle Scholar
  10. Holzapfel V, Musyanovych A, Landfaster K, Lorenz MR, Mailander V (2005) Preparation of fluorescent carboxyl and amino functionalized polystyrene particles by miniemulsion polymerization as markers for cells. Macromol Chem Phys 206:2440–2449CrossRefGoogle Scholar
  11. Hun X, Zhang Z (2007a) A novel sensitive staphylococcal enterotoxin C1 fluoroimmunoassay based on functionalized fluorescent core-shell nanoparticle labels. Food Chem 105:1623–1629CrossRefGoogle Scholar
  12. Hun X, Zhang Z (2007b) Fluoroimmunoassay for tumor necrosis factor- α in human serum using Ru(bpy)3Cl2-doped fluorescent silica nanoparticles as labels. Talanta 73:366–371CrossRefGoogle Scholar
  13. Hun X, Zhang Z, Tiao L (2008) Anti-Her-2 monoclonal antibody conjugated polymer fluorescent nanoparticles probe for ovarian cancer imaging. Anal Chim Acta 625:201–206CrossRefGoogle Scholar
  14. Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E (1999) Biosensors for detection of pathogenic bacteria. Biosens Bioelectron 14:599–624CrossRefGoogle Scholar
  15. Jain S, Chattopadhyay S, Jackeray R, Abid Z, Singh H (2013) Novel functionalized fluorescent polymeric nanoparticles: synthesis, characterization and immobilization of biomolecules. Nanoscale 5:6883–6892CrossRefGoogle Scholar
  16. Kumar S, Balakrishna K, Batra HV (2008) Enrichment-ELISA for detection of Salmonella typhi from food and water samples. Biomed Environ Sci 21(2):137–143CrossRefGoogle Scholar
  17. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B 75:1–18CrossRefGoogle Scholar
  18. Liandris E, Gazouli M, Andreadou M, Sechi LA, Rosu V, Ikonomopoulos J (2011) Detection of pathogenic mycobacteria based on functionalized quantum dots coupled with immunomagnetic separation. PLoS One 6:e20026–e20032CrossRefGoogle Scholar
  19. Nichkova M, Dosev D, Gee SJ, Hammock BD, Kennedy IM (2005) Microarray immunoassay for phenoxybenzoic acid using polymer encapsulated Eu:Gd2O3 nanoparticles as fluorescent labels. Anal Chem 77:6864–6873CrossRefGoogle Scholar
  20. Park J, Kurosawa S, Watanabe J, Ishihara K (2004) Evaluation of 2-methacryloyloxyethyl phosphorylcholine polymeric nanoparticle for immunoassay of C-reactive protein detection. Anal Chem 76(9):2649–2655CrossRefGoogle Scholar
  21. Pich A, Bhattacharya S, Hans-Juergen Adler P, Wage T, Taubenberger A, Li Z, Pee K, Bo¨hmer U, Bley T (2006) Composite magnetic particles as carriers for laccase from Trametes versicolor. Macromol Biosci 6:301–310CrossRefGoogle Scholar
  22. Qui D, He X, Wang K, Zhao X, Tan W, Chen J (2007) Fluorescent nanoparticle-based indirect immunofluorescence microscopy for detection of Mycobacterium tuberculosis. J Biomed Biotechnol 7:89364–89370Google Scholar
  23. Santra S, Dutta D, Moudgil BM (2005a) Functional dye-doped silica nanoparticles for bioimaging, diagnostics and therapeutics. Food Bioprod Process 83:136–140CrossRefGoogle Scholar
  24. Santra S, Dutta D, Walter G, Moudgil B (2005b) Fluorescent nanoparticle probes for cancer imaging. Technol Cancer Res Treat 4:593–602CrossRefGoogle Scholar
  25. Soukka T, Halrmal H, Paukkunen J, Lolvgren T (2001) Utilization of kinetically enhanced monovalent binding affinity by immunoassays based on multivalent nanoparticle-antibody bioconjugates. Anal Chem 73:2254–2260CrossRefGoogle Scholar
  26. Vakurov A, Pchelintsev NA, Forde J, Fagain CO, Gibson T, Millner P (2009) The preparation of size-controlled functionalized polymeric nanoparticles in micelles. Nanotechnology 20:295605–295612CrossRefGoogle Scholar
  27. Wang J, Mazza G (2002) Effects of anthocyanins and other phenolic compounds on the production of tumor necrosis factor α in LPS/IFN-γ-activated raw 264.7 macrophages. J Agric Food Chem 50:4183–4191CrossRefGoogle Scholar
  28. Wang L, Zhao W, Tan W (2008a) Bioconjugated silica nanoparticles: development and applications. Nano Res 1:99–115CrossRefGoogle Scholar
  29. Wang X, Wu J, Li F, Li H (2008b) Synthesis of water-soluble CdSe quantum dots by ligand exchange with p-sulfonatocalix(n)arene (n = 4, 6) as fluorescent probes for amino acids. Nanotechnology 19:205501–205509CrossRefGoogle Scholar
  30. Yang L, Li Y (2006) Simultaneous detection of Escherichia coli O157:H7 and Salmonella Typhimurium using quantum dots as fluorescence labels. Analyst 131:394–401CrossRefGoogle Scholar
  31. Yang W, Zhang CG, Qu HY, Wang HH, Xu JG (2004) Novel fluorescent silica nanoparticle probe for ultrasensitive immunoassays. Anal Chim Acta 503:163–169CrossRefGoogle Scholar
  32. Yaohua H, Chengcheng W, Bing B, Mintong L, Wang R, Li Y (2014) Detection of Staphylococcus aureus using quantum dots as fluorescence labels. Int J Agric Biol Eng 7:77–81Google Scholar
  33. Yu H, Bruno JG (1996) Immunomagnetic-electrochemiluminescent detection of Escherichia coli O157 and Salmonella typhimurium in foods and environmental water samples. Appl Environ Microbiol 62:587–592Google Scholar
  34. Zhao X, Hillard LR, Mechery S, Wang Y, Bagwe RP, Jin S (2004) A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. PNAS 101:15027–15032CrossRefGoogle Scholar
  35. Zhou L, Pollard AJ (2010) A fast and highly sensitive blood culture pcr method for clinical detection of Salmonella enterica serovar typhi. Clin Microbiol Antimicrob 9:14–18CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Swati Jain
    • 1
  • Sruti Chattopadhyay
    • 1
  • Richa Jackeray
    • 1
  • Zainul Abid
    • 1
  • Harpal Singh
    • 1
  1. 1.Centre for Biomedical Engineering, Indian Institute of Technology-DelhiNew DelhiIndia

Personalised recommendations