Competing effects between intrinsic and extrinsic defects in pure and Mn-doped ZnO nanocrystals

  • Thomas Ruf
  • Sergej Repp
  • Joanna Urban
  • Ralf Thomann
  • Emre Erdem
Research Paper


Nano-sized ZnO doped with transition metals is one of the most promising candidates in the field of diluted magnetic semiconductors unifying ferromagnetic and semiconductor properties. Promising is the exploitation of the magnetic spin of the electron and by that the application in spintronics. As the mechanism of spin coupling is still controversial, insight into the coexistence and interaction of intrinsic and extrinsic effects is vital for further technological progress. We report on the synthesis of a set of nano-sized Zn1−x Mn x O samples with a nominal concentration of x = 0.000005–0.03 and structural (XRD, TEM, and AFM), as well as electronic (PL, UV–Vis, FTIR, and EPR) investigations. In this contribution, possible interaction effects were summarized in terms of Mn doping and size. PL quenching after doping was also discussed as another aspect for the interrelations of the defects.


Defects EPR spectroscopy ZnO Nanostructures 



This research has been financially supported by the Deutsche Forschungsgemeinschaft, DFG (Grant No. Er 662/1-2). The authors would like to thank Dr. M. Ade (University of Freiburg, Germany) for XRD measurements, Prof. Dr. Stefan Weber and Prof Dr. T. Hugel (University of Freiburg, Germany) for valuable discussions and continuous support.

Supplementary material

11051_2016_3408_MOESM1_ESM.doc (1015 kb)
Supplementary material 1 (DOC 1015 kb)


  1. Abrishami ME, Kompany A, Hosseini SM (2012) Varistor behavior of Mn doped ZnO ceramics prepared from nanosized precursors. J Electroceram 29:25–32Google Scholar
  2. Acikgoz M, Drahus MD, Ozarowski A, van Tol J, Weber S, Erdem E (2014) Local coordination of Fe3+ in ZnO nanoparticles: multi-frequency electron paramagnetic resonance (EPR) and Newman superposition model analysis. J Phys Condens Matter 26:155803CrossRefGoogle Scholar
  3. Ahmad T, Khatoon S, Coolahan K (2014) Optical and magnetic properties of Sn1-xMnxO2 dilute magnetic semiconductor nanoparticles. J Alloy Compd 615:263–269CrossRefGoogle Scholar
  4. Akdogan N, Nefedov A, Westerholt K, Zabel H, Becker HW, Somsen C, Khaibullin R, Tagirov L (2008) Intrinsic room temperature ferromagnetism in Co-implanted ZnO. J Phys D 41:165001CrossRefGoogle Scholar
  5. Alaria J, Turek P, Bernard M, Bouloudenine M, Berbadj A, Brihi N, Schmerber G, Colis S, Dinia A (2005) No ferromagnetism in Mn doped ZnO semiconductors. Chem Phys Lett 415:337–341CrossRefGoogle Scholar
  6. Ali AG, Dejene FB, Swart HC (2012) Effect of Mn doping on the structural and optical properties of sol-gel derived ZnO nanoparticles. Cent Eur J Phys 10:478–484Google Scholar
  7. Aljawfi RN, Rahman F, Batoo KM (2013) Surface defect mediated magnetic interactions and ferromagnetism in Cr/Co Co-doped ZnO nanoparticles. J Magn Magn Mater 332:130–136CrossRefGoogle Scholar
  8. Avrutin V, Izyumskaya N, Ozgur U, Silversmith DJ, Morkoc H (2010) Ferromagnetism in ZnO- and GaN-based diluted magnetic semiconductors: achievements and challenges. Proc IEEE 98:1288–1301CrossRefGoogle Scholar
  9. Baraki R, Zierep P, Erdem E, Weber S, Granzow T (2014) Electron paramagnetic resonance study of ZnO varistor material. J Phys 26:115801Google Scholar
  10. Barroso M, Pendlebury SR, Cowan AJ, Durrant JR (2013) Charge carrier trapping, recombination and transfer in hematite (alpha-Fe2O3) water splitting photoanodes. Chem Sci 4:2724–2734CrossRefGoogle Scholar
  11. Beaulac R, Gamelin DR (2010) Two-center formulation of Mn2+-electron s-d exchange coupling in bulk and quantum-confined diluted magnetic semiconductors. Physical Review B 82:224401CrossRefGoogle Scholar
  12. Beaulac R, Archer PI, Liu X, Lee S, Salley GM, Dobrowolska M, Furdyna JK, Gamelin DR (2008a) Spin-polarizable excitonic luminescence in colloidal Mn2+-doped CdSe quantum dots. Nano Lett 8:1197–1201CrossRefGoogle Scholar
  13. Beaulac R, Archer PI, van Rijssel J, Meijerink A, Gamelin DR (2008b) Exciton storage by Mn2+ in colloidal Mn2+-doped CdSe quantum dots. Nano Lett 8:2949–2953CrossRefGoogle Scholar
  14. Beaulac R, Schneider L, Archer PI, Bacher G, Gamelin DR (2009) Light-induced spontaneous magnetization in doped colloidal quantum dots. Science 325:973–976CrossRefGoogle Scholar
  15. Bhattacharyya S, Gedanken A (2008) Synthesis, characterization, and room-temperature ferromagnetism in cobalt-doped zinc oxide (ZnO : Co2+) nanocrystals encapsulated in carbon. J Phys Chem C 112:4517–4523CrossRefGoogle Scholar
  16. Bouvy C, Marine W, Su B-L (2007) ZnO/mesoporous silica nanocomposites prepared by the reverse micelle and the colloidal methods: photoluminescent properties and quantum size effect. Chem Phys Lett 438:67–71CrossRefGoogle Scholar
  17. Cai L, He J, Liu Q, Yao T, Chen L, Yan W, Hu F, Jiang Y, Zhao Y, Hu T, Sun Z, Wei S (2015) Vacancy-induced ferromagnetism of MoS2 nanosheets. JAm Chem Soc 137:2622–2627CrossRefGoogle Scholar
  18. Can MM, Firat T, Ozcan S (2011) Dominancy of antiferromagnetism in Zn1−xCoxO diluted magnetic semiconductors. J Mater Sci 46:1830–1838CrossRefGoogle Scholar
  19. Chen Z-Y, Chen ZQ, Zou B, Zhao XG, Tang Z, Wang SJ (2012) Defect mediated ferromagnetism in Ni-doped ZnO nanocrystals evidenced by positron annihilation spectroscopy. J Appl Phys 112:083905CrossRefGoogle Scholar
  20. Chernenko AV (2015) Nonradiative Recombination of excitons in semimagnetic quantum dots. Semiconductors 49:1575–1581CrossRefGoogle Scholar
  21. Dang VS, Song YY, Hoa NQ, Yu SC, Yoo YG (2008) Ferromagnetism-to-paramagnetism transition in the ZnMnO system. J Korean Phys Soc 52:1398–1401CrossRefGoogle Scholar
  22. Dantas NO, Damigo L, Qua F, Silva RS, Sartoratto PPC, Miranda KL, Vilela EC, Pelegrini F, Morais PC (2008) Structural and magnetic properties of ZnO and Zn1−xMnxO nanocrystals. J Non-Cryst Solids 354:4727–4729CrossRefGoogle Scholar
  23. Delikanli S, Akgul MZ, Murphy JR, Barman B, Tsai Y, Scrace T, Zhang P, Bozok B, Hernandez-Martinez PL, Christodoulides J, Cartwright AN, Petrou A, Demir HV (2015) Mn2+-doped CdSe/CdS core/multishell colloidal quantum wells enabling tunable carrier-dopant exchange interactions. ACS Nano 9:12473–12479CrossRefGoogle Scholar
  24. Dev P, Zhang P (2010) Unconventional magnetism in semiconductors: role of localized acceptor states. Phys Rev B 81:085207CrossRefGoogle Scholar
  25. Diaconu M, Schmidt H, Poppl A, Böttcher R, Hoentsch J, Klunker A, Spemann D, Hochmuth H, Lorenz M, Grundmann M (2005a) Electron paramagnetic resonance of Zn1−xMnxO thin films and single crystals. Phys Rev B 72:085214CrossRefGoogle Scholar
  26. Diaconu M, Schmidt H, Poppl A, Böttcher R, Hoentsch J, Rahm A, Hochmuth H, Lorenz M, Grundmann M (2005b) EPR study on magnetic Zn1−xMnxO. Superlattices Microstruct 38:413–420CrossRefGoogle Scholar
  27. Dick KA, Deppert K, Larsson MW, Martensson T, Seifert W, Wallenberg LR, Samuelson L (2004) Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nat Mater 3:380–384CrossRefGoogle Scholar
  28. Djerdj I, Garnweitner G, Arcon D, Pregelj M, Jaglicic Z, Niederberger M (2008) Diluted magnetic semiconductors: Mn/Co-doped ZnO nanorods as case study. J Mater Chem 18:5208–5217CrossRefGoogle Scholar
  29. Djurisic AB, Leung YH (2006) Optical properties of ZnO nanostructures. Small 2:944–961CrossRefGoogle Scholar
  30. Duan LB, Zhao XR, Liu JM, Wang T, Rao GH (2010) Room-temperature ferromagnetism in lightly Cr-doped ZnO nanoparticles. Appl Phys A 99:679–683CrossRefGoogle Scholar
  31. Erdem E (2014) Microwave power, temperature, atmospheric and light dependence of intrinsic defects in ZnO nanoparticles: a study of electron paramagnetic resonance (EPR) spectroscopy. J Alloy Compd 605:34–44CrossRefGoogle Scholar
  32. Erhart P, Albe K (2006) Diffusion of zinc vacancies and interstitials in zinc oxide. Appl Phys Lett 88:201918CrossRefGoogle Scholar
  33. Evans SM, Giles NC, Halliburton LE, Kappers LA (2008) Further characterization of oxygen vacancies and zinc vacancies in electron-irradiated ZnO. J Appl Phys 103:043710CrossRefGoogle Scholar
  34. Fainblat R, Frohleiks J, Muckel F, Yu JH, Yang J, Hyeon T, Bacher G (2012) Quantum confinement-controlled exchange coupling in manganese(II)-doped CdSe two-dimensional quantum well nanoribbons. Nano Lett 12:5311–5317CrossRefGoogle Scholar
  35. Garces NY, Wang L, Bai L, Giles NC, Halliburton LE, Cantwell G (2002) Role of copper in the green luminescence from ZnO crystals. Appl Phys Lett 81:622–624CrossRefGoogle Scholar
  36. Gonzalez C, Block D, Cox RT, Herve A (1982) Magnetic resonance studies of shallow donors in zinc oxide. J Cryst Growth 59:357–362CrossRefGoogle Scholar
  37. Hofmann DM, Hofstaetter A, Leiter F, Zhou HJ, Henecker F, Meyer BK, Orlinskii SB, Schmidt J, Baranov PG (2002) Hydrogen: a relevant shallow donor in zinc oxide. Phys Rev Lett 88:045504CrossRefGoogle Scholar
  38. Hong YW, Kim JH (2004) The electrical properties of Mn3O4-doped ZnO. Ceram Int 30:1301–1306CrossRefGoogle Scholar
  39. Ilyas U, Rawat RS, Roshan G, Tan TL, Lee P, Springham SV, Zhang S, Li F, Chen R, Sun HD (2011) Quenching of surface traps in Mn doped ZnO thin films for enhanced optical transparency. Appl Surf Sci 258:890–897CrossRefGoogle Scholar
  40. Inamdar DY, Pathak AK, Dubenko I, Ali N, Mahamuni S (2011) Room temperature ferromagnetism and photoluminescence of Fe doped ZnO nanocrystals. J Phys Chem C 115:23671–23676CrossRefGoogle Scholar
  41. Ischenko V, Polarz S, Grote D, Stavarache V, Fink K, Driess M (2005) Zinc oxide nanoparticles with defects. Adv Funct Mater 15:1945–1954CrossRefGoogle Scholar
  42. Jagadish C and Pearton S J (2006) Zinc oxide bulk, thin films and nanostructures processing, properties, and applications. Elsevier isbn: 9780080447223Google Scholar
  43. Jakes P, Erdem E (2011) Finite size effects in ZnO nanoparticles: an electron paramagnetic resonance (EPR) analysis. Phys Status Solidi-(RRL) 5:56–58CrossRefGoogle Scholar
  44. Janotti A, Van de Walle CG (2009) Fundamentals of zinc oxide as a semiconductor. Rep Prog Phys 72:126501CrossRefGoogle Scholar
  45. Jayakumar OD, Kadam RM, Tyagi AK (2011) Ferromagnetism in Mn Doped ZnO nanoparticles: an EPR study. Nanosci Nanotechnol Lett 3:584–590CrossRefGoogle Scholar
  46. Kaftelen H, Ocakoglu K, Tu S, Thomann R, Weber S, Erdem E (2012) EPR and photoluminescence spectroscopy studies on the defect structure of ZnO nanocrystals. Phys Rev B 86:014113CrossRefGoogle Scholar
  47. Kaftelen H, Tuncer M, Tu S, Repp S, Gocmez H, Thomann R, Weber S, Erdem E (2013) Mn-substituted spinel Li4Ti5O12 materials studied by multifrequency EPR spectroscopy. J Material Chem A 1:9973–9982CrossRefGoogle Scholar
  48. Kakazey M, Vlasova M, Dominguez-Patino M, Dominguez-Patino G, Sreckovic T, Nikolic N (2004) Electron paramagnetic resonance in the research of defect formation and thermal processes during grinding of ZnO powders. Sci Sinter 36:65–72CrossRefGoogle Scholar
  49. Kakazey M, Vlasova M, Dominguez-Patino M, Munguia-Diaz J (2008) Formation of a solid solution of ZnO: Mn(2+) during mechanical treatment of oxides mixture. Solid State Commun 145:122–125CrossRefGoogle Scholar
  50. Karmakar D, Mandal SK, Kadam RM, Paulose PL, Rajarajan AK, Nath TK, Das AK, Dasgupta I, Das GP (2007) Ferromagnetism in Fe-doped ZnO nanocrystals: experiment and theory. Phys Rev B 75:144404CrossRefGoogle Scholar
  51. Kopitzki K and Herzog P (2007) Einführung in der festkörperphysik. Vieweg-Teubner Verlag ISBN: 978-3-83510144-9Google Scholar
  52. Kundaliya DC, Ogale SB, Lofland SE, Dhar S, Metting CJ, Shinde SR, Ma Z, Varughese B, Ramanujachary KV, Salamanca-Riba L, Venkatesan T (2004) On the origin of high-temperature ferromagnetism in the low-temperature-processed Mn–Zn–O system. Nat Mater 3:709–714CrossRefGoogle Scholar
  53. Kuriakose S, Satpati B, Mohapatra S (2014) Enhanced photocatalytic activity of Co doped ZnO nanodisks and nanorods prepared by a facile wet chemical method. Phys Chem Chem Phys 16:12741–12749CrossRefGoogle Scholar
  54. Kuriakose S, Satpati B, Mohapatra S (2015) Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures. Phys Chem Chem Phys 17:25172–25181CrossRefGoogle Scholar
  55. Li J, Fan H, Chen X, Cao Z (2009) Structural and photoluminescence of Mn-doped ZnO single-crystalline nanorods grown via solvothermal method. Colloids and Surf A 349:202–206CrossRefGoogle Scholar
  56. Lommens P, Loncke F, Smet PF, Callens F, Poelman D, Vrielinck H, Hens Z (2007) Dopant incorporation in colloidal quantum dots: a case study on Co2+ doped ZnO. Chem Mater 19:5576–5583CrossRefGoogle Scholar
  57. Lommens P, Lambert K, Loncke F, De Muynck D, Balkan T, Vanhaecke F, Vrielinck H, Callens F, Hens Z (2008) The growth of Co : ZnO/ZnO core/shell colloidal quantum dots: changes in nanocrystal size, concentration and dopant coordination. Chem Phys Chem 9:484–491Google Scholar
  58. Look DC, Jones RL, Sizelove JR, Garces NY, Giles NC, Halliburton LE (2003) The path to ZnO devices: donor and acceptor dynamics. Phys Status Solidi A 195:171–177CrossRefGoogle Scholar
  59. Luo X, Lee W-T, Xing G, Bao N, Yonis A, Chu D, Lee J, Ding J, Li S, Yi J (2015) Ferromagnetic ordering in Mn-doped ZnO nanoparticles. Nanoscale Res Lett 9:625CrossRefGoogle Scholar
  60. Mandal SK, Das AK, Nath TK, Karmakar D (2006) Temperature dependence of solubility limits of transition metals (Co, Mn, Fe, and Ni) in ZnO nanoparticles. Appl Phys Lett 89:144105CrossRefGoogle Scholar
  61. McCluskey MD, Jokela SJ (2009) Defects in ZnO. J Appl Phys 106:071101CrossRefGoogle Scholar
  62. Meyer BK, Alves H, Hofmann DM, Kriegseis W, Forster D, Bertram F, Christen J, Hoffmann A, Strassburg M, Dworzak M, Haboeck U, Rodina AV (2004) Bound exciton and donor-acceptor pair recombinations in ZnO. Phys Status Solidi B 241:231–260CrossRefGoogle Scholar
  63. Moribe S, Ikoma T, Akiyama K, Zhang QW, Saito F, Tero-Kubota S (2007) EPR study on paramagnetic species in nitrogen-doped ZnO powders prepared by a mechanochemical method. Chem Phys Lett 436:373–377CrossRefGoogle Scholar
  64. Newton MC, Leake SJ, Harder R, Robinson IK (2010) Three-dimensional imaging of strain in a single ZnO nanorod. Nat Mater 9:120–124CrossRefGoogle Scholar
  65. Nickel N H and Terukov E (2004) Zinc oxide as a material for micro- and optoelectronic applications. Springer, ISBN: 978-1-4020-3473-2Google Scholar
  66. Nikitenko VA (1992) Luminescence and EPR of ZnO (Review). J Appl Spectrosc 57:367–385CrossRefGoogle Scholar
  67. Norberg NS, Kittilstved KR, Amonette JE, Kukkadapu RK, Schwartz DA, Gamelin DR (2004) Synthesis of colloidal Mn2+: ZnO quantum dots and high-TC ferromagnetic nanocrystalline thin films. J Am Chem Soc 126:9387–9398CrossRefGoogle Scholar
  68. Oba F, Choi M, Togo A, Tanaka I (2011) Point defects in ZnO: an approach from first principles. Sci Technol Adv Mater 12:034302CrossRefGoogle Scholar
  69. Ochsenbein ST, Gamelin DR (2011) Quantum oscillations in magnetically doped colloidal nanocrystals. Nat Nanotechnol 6:111–114CrossRefGoogle Scholar
  70. Ochsenbein ST, Feng Y, Whitaker KM, Badaeva E, Liu WK, Li XS, Gamelin DR (2009) Charge-controlled magnetism in colloidal doped semiconductor nanocrystals. Nat Nanotechnol 4:681–687CrossRefGoogle Scholar
  71. Orlinskii SB, Schmidt J, Baranov PG, Donega CD, Meijerink A (2009) Dynamic nuclear polarization of Zn-67 and H-1 spins by means of shallow donors in ZnO nanoparticles. Phys Rev B 79:165316CrossRefGoogle Scholar
  72. Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301CrossRefGoogle Scholar
  73. Parashar SKS, Murty BS, Repp S, Weber S, Erdem E (2012) Investigation of intrinsic defects in core–shell structured ZnO nanocrystals. J Appl Phys 111:113712CrossRefGoogle Scholar
  74. Pearton SJ, Norton DP, Ivill MP, Hebard AF, Zavada JM, Chen WM, Buyanova IA (2007) ZnO doped with transition metal ions. IEEE Trans Electron Devices 54:1040–1048CrossRefGoogle Scholar
  75. Phan TL, Vincent R, Phan MH, Dan NH, Yu SC (2007) Spin dynamics in annealed Mn-doped ZnO ceramic materials. Solid State Commun 144:134–137CrossRefGoogle Scholar
  76. Price BY, Hardal G, Acikgoz M, Repp S, Erdem E (2015) Effects of MnO doping on the electronic properties of zinc oxide: 406 GHz electron paramagnetic resonance spectroscopy and Newman superposition model analysis. J Appl Phys 118:175705CrossRefGoogle Scholar
  77. Repp S, Erdem E (2016) Controlling the exciton energy of zinc oxide (ZnO) quantum dots by changing the confinement conditions. Spectrochim Acta Part A 152:637–644CrossRefGoogle Scholar
  78. Santos DAA, Macedo MA (2012) Study of the magnetic and structural properties of Mn-, Fe-, and Co-doped ZnO powder. Phys B 407:3229–3232CrossRefGoogle Scholar
  79. Scherrer P (1918) Nachrichten von der gesellschaft der wissenschaften zu göttingen. Math Phys Klasse 1918:98–100Google Scholar
  80. Schimpf AM, Rinehart JD, Ochsenbein ST, Gamelin DR (2015) Charge-state control of Mn2+ spin relaxation dynamics in colloidal n-type Zn1−xMnxO Nanocrystals. J Phys Chem Lett 6:1748–1753CrossRefGoogle Scholar
  81. Schlenker E, Bakin A, Schmid H, Mader W, Bremers H, Hangleiter A, Wehmann HH, Al-Suleiman M, Ludke J, Albrecht M, Waag A (2008) Properties of Mn-doped ZnO nanopowder. Appl Phys A 91:375–378CrossRefGoogle Scholar
  82. Schmitt M (2012) ZnO nanoparticle induced photo-Kolbe reaction, fragment stabilization and effect on photopolymerization monitored by Raman-UV–Vis measurements. Macromol Chem Phys 213:1953–1962CrossRefGoogle Scholar
  83. Senthilkumar P, Rajeswari P and Dhanuskodi S (2015) Effect of surfactants on the emission properties of ZnO: Mn3O4 nanocomposites. Nonlinear frequency generation and conversion: materials, devices, and applications XIV, In: Konstantin L. Vodopyanov (ed.). Proceeding of SPIE 9347: 93471V-1Google Scholar
  84. Shannon RD (1976) Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767CrossRefGoogle Scholar
  85. Sharma P, Gupta A, Rao KV, Owens FJ, Sharma R, Ahuja R, Guillen JMO, Johansson B, Gehring GA (2003) Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nat Mater 2:673–677CrossRefGoogle Scholar
  86. Straumal BB, Protasova SG, Mazilkin AA, Myatiev AA, Straumal PB, Schuetz G, Goering E, Baretzky B (2010) Ferromagnetic properties of the Mn-doped nanograined ZnO films. J Appl Phys 108:073923CrossRefGoogle Scholar
  87. Tan TL, Lai CW, Abd Hamid SB (2014) Tunable band gap energy of Mn-doped ZnO nanoparticles using the coprecipitation technique. J Nanomater 2014:371720Google Scholar
  88. Tauc J, Grigorov R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Physica Status Solidi 15:627CrossRefGoogle Scholar
  89. Tian ZRR, Voigt JA, Liu J, McKenzie B, McDermott MJ, Rodriguez MA, Konishi H, Xu HF (2003) Complex and oriented ZnO nanostructures. Nat Mater 2:821–826CrossRefGoogle Scholar
  90. Toplan O, Gunay V, Ozkan OT (1997) Grain growth in the MnO added ZnO-6 wt % Sb2O3 ceramic system. Ceram Int 23:251–255CrossRefGoogle Scholar
  91. Vanheusden K, Warren WL, Seager CH, Tallant DR, Voigt JA, Gnade BE (1996) Mechanisms behind green photoluminescence in ZnO phosphor powders. J Appl Phys 79:7983–7990CrossRefGoogle Scholar
  92. Vijayalakshmi K, Sivaraj D (2015) Enhanced antibacterial activity of Cr doped ZnO nanorods synthesized using microwave processing. RSC Adv 5:68461–68469CrossRefGoogle Scholar
  93. Viswanatha R, Sapra S, Sen Gupta S, Satpati B, Satyam PV, Dev BN, Sarma DD (2004) Synthesis and characterization of Mn-doped ZnO nanocrystals. J Phys Chem B 108:6303–6310CrossRefGoogle Scholar
  94. Xu QY, Schmidt H, Hartmann L, Hochmuth H, Lorenz M, Setzer A, Esquinazi P, Meinecke C, Grundmann M (2007) Room temperature ferromagnetism in Mn-doped ZnO films mediated by acceptor defects. Appl Phys Lett 91:092503CrossRefGoogle Scholar
  95. Yilmaz S, McGlynn E, Bacaksiz E, Bogan J (2014) Defect-mediated ferromagnetism in ZnO: Mn nanorods. Appl Phys A 115:313–321CrossRefGoogle Scholar
  96. Zhang SB, Wei SH, Zunger A (2001) Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys Rev B 63:075205CrossRefGoogle Scholar
  97. Zhang Y-J, Luo Y-D, Lin Y-H, Nan C-W (2013) Ferromagnetic and optical behaviors observed in Mn-doped ZnO-based thin films. Thin Solid Films 537:239–241CrossRefGoogle Scholar
  98. Zhong HM, Wang JB, Chen XS, Li ZF, Xu WL, Lu W (2006) Effect of Mn+ ion implantation on the Raman spectra of ZnO. J Appl Phys 99:103905CrossRefGoogle Scholar
  99. Zhou D, Kittilstved KR (2015) Control over Fe3+ speciation in colloidal ZnO nanocrystals. J Mater Chem C 3:4352–4358CrossRefGoogle Scholar
  100. Zhou HJ, Hofmann DM, Hofstaetter A, Meyer BK (2003) Magnetic resonance investigation of Mn2+ in ZnO nanocrystals. J Appl Phys 94:965–968Google Scholar
  101. Zhou HJ, Hofmann DM, Alves HR, Meyer BK (2006) Correlation of Mn local structure and photoluminescence from CdS: Mn nanoparticles. J Appl Phys 99:103502CrossRefGoogle Scholar
  102. Zhou SQ, Potzger K, Xu QY, Talut G, Lorenz M, Skorupa W, Helm M, Fassbender J, Grundmann M, Schmidt H (2009) Ferromagnetic transition metal implanted ZnO: a diluted magnetic semiconductor? Vacuum 83:S13–S19CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Thomas Ruf
    • 1
  • Sergej Repp
    • 1
  • Joanna Urban
    • 1
  • Ralf Thomann
    • 2
  • Emre Erdem
    • 1
  1. 1.Institut für Physikalische ChemieAlbert-Ludwigs-Universität FreiburgFreiburgGermany
  2. 2.Freiburger Materialforschungszentrum (FMF)Albert-Ludwigs-Universität FreiburgFreiburgGermany

Personalised recommendations