Advertisement

Tunable silver-shell dielectric core nano-beads array for thin-film solar cell application

  • Yuan-Fong Chou Chau
  • Chee Ming Lim
  • Chien-Ying Chiang
  • Nyuk Yoong Voo
  • Nur Syafi’ie Muhammad Idris
  • Siew Ung Chai
Research Paper

Abstract

The absorbance spectra of thin-film solar cells (TFSCs) can be enhanced by constructing the tunable periodic Ag-shell nano-bead (PASNB) arrays in the active material. In this paper, we investigated a plasmonic thin-film solar cell (TFSC) which composed of the arrays of PASNB deposited onto a crystalline silicon layer. By performing three-dimensional finite element method, we demonstrate that near field coupling among the PASNB arrays results in SPR modes with enhanced absorbance and field intensity. The proposed structure can significantly enhance the plasmonic activity in a wide range of incident light and enlarge working wavelength of absorbance in the range of near-UV, visible and near-infrared. We show that the sensitivity of the PASNB arrays reveals a linear relationship with the thickness of Ag-shell nano-bead (ASNB) for both the anti-bonding and bonding modes in the absorbance spectra. The broadband of absorbance spectra could be expanded as a wide range by varying the thickness of ASNB while the particle size is kept constant. Simulation results suggest this alternative scheme to the design and improvements on plasmonic enhanced TFSCs can be extended to other nanophotonic applications.

Keywords

Plasmonic thin-film solar cell Ag-shell nano-bead Finite element method Absorbance spectra Energy conversion Modeling and simulation 

Notes

Acknowledgments

This work was supported by the University Research Grant of Universiti Brunei Darussalam (Grant No. UBD-ORI-URC-RG331-U01).

References

  1. Aizpurua J, Hanarp P, Sutherland DS, Käll M, Bryant GW, García de Abajo FL (2003) Optical properties of gold nanorings. Phys Rev Lett 90:057401CrossRefGoogle Scholar
  2. Akimov YA, Koh WS (2011) Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells. Plasmonics 6:155–161CrossRefGoogle Scholar
  3. Akimov YA, Ostrikov K, Li EP (2009) Surface plasmon enhancement of optical absorption in thin-film silicon solar cells. Plasmonics 4:107–113CrossRefGoogle Scholar
  4. Ashwin CA, Aitzol GE, Hadiseh A, Jennifer A (2012) Dionne toward high-efficiency solar upconversion with plasmonic nanostructures. J Opt 14:024008CrossRefGoogle Scholar
  5. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213CrossRefGoogle Scholar
  6. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New YorkCrossRefGoogle Scholar
  7. Brongersma ML, Pala RA, White J, Barnard E, Liu J (2009) Design of plasmonic thin-film solar cells with broadband absorption enhancements. Adv Mater 21:1Google Scholar
  8. Catchpole KR, Polman A (2008a) Plasmonic solar cells. Opt Expr 16:21793CrossRefGoogle Scholar
  9. Catchpole KR, Polman A (2008b) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:191113CrossRefGoogle Scholar
  10. Centeno A, Breeze J, Ahmed B, Reehal H, Alford N (2010) Scattering of light into silicon by spherical and hemispherical silver nanoparticles. Opt Lett 35:76–78CrossRefGoogle Scholar
  11. Centeno A, Ahmed B, Reehal H, Xie F (2013) Diffuse scattering from hemispherical nanoparticles at the air-silicon interface. Nanotechnology 24:415402CrossRefGoogle Scholar
  12. Chau YF, Jheng CY (2014) Buried effects of surface plasmon resonance modes for periodic metal-dielectric nanostructures consisting of coupled spherical metal nanoparticles with cylindrical pore filled with a dielectric. Plasmonics 9:1–9CrossRefGoogle Scholar
  13. Chau YF, Yang TJ, Tsai DP (2004) Imaging properties of three dimensional aperture near-field scanning optical microscopy and optimized near-field fiber probe designs. Jpn J Appl Phys 43:8115–8125CrossRefGoogle Scholar
  14. Chau YF, Yeh HH, Tsai DP (2008) Near-field optical properties and surface plasmon effects generated by a dielectric hole in a silver-shell nanocylinder pair. Appl Opt 47:5557–5561CrossRefGoogle Scholar
  15. Chau YF, Lin YJ, Tsai DP (2010) Enhanced surface plasmon resonance based on the silver nanoshells connected by the nanobars. Opt Expr 18:3510CrossRefGoogle Scholar
  16. Chau YF, Jheng CY, Joe SF, Wang SF, Yang W, Jheng JC, Sun YS, Chu Y, Wei JH (2013) Structurally and materially sensitive hybrid surface plasmon modes in periodic silver-shell nanopearl and its dimer arrays. J Nanopart Res 15:1424CrossRefGoogle Scholar
  17. Chau YF, Hu CC, Jheng CY, Tsai ST, Hsieh LZ, Yang W, Chiang CY, Sun YS, Lee CM (2014) Numerical investigation of surface plasmon resonance effects on photocatalytic activities using silver nano-beads photodeposited onto a titanium dioxide layer. Opt Commun 331:223–228CrossRefGoogle Scholar
  18. Chik H, Xu JM (2004) Nanometric superlattices: non-lithographic fabrication, materials and prospects. Mater Sci Eng R 43:103–138CrossRefGoogle Scholar
  19. Coˆte´ R, Segev B (1998) Retardation effects on quantum reflection from an evanescent-wave atomic mirror. Phys Rev A 58:3999–4013CrossRefGoogle Scholar
  20. Dunbar RB, Pfadler T, La NN, Baumberg JJ, Schmidt-Mende L (2012) Application of plasmonic silver island films in thin-film silicon solar cells. Nanotechnology 23:385202CrossRefGoogle Scholar
  21. Fan J, Lee W, Scholz R, Dadgar A, Krost A, Nielsch K, Zacharias M (2005) Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed approach. Nanotechnology 16:913CrossRefGoogle Scholar
  22. Fredriksson H, Alaverdyan Y, Dmitriev A, Langhammer C, Sutherland DS, Zach M, Kasemo B (2007) Hole-mask collidal lithography. Adv Mater 19:4297–4302CrossRefGoogle Scholar
  23. Garcia-Molina R, Gras-Marti A, Ahowie Ritchie RH (1985) Retardation effects in the interaction of charged particle beams with bounded condensed media. J Phys C 18:335–5345CrossRefGoogle Scholar
  24. Gresho PM, Sani RL (2000) Incompressible flow and finite element method, volume 1 and 2. Wiley, New YorkGoogle Scholar
  25. Henson J, DiMaria J, Dimakis E, Moustakas TD, Paiella R (2012) Plasmon-enhanced light emission based on lattice resonances of silver nanocylinder arrays. Opt Lett 37:79–81CrossRefGoogle Scholar
  26. Ho YZ, Chen WT, Huang YW, Wu PC, Tseng ML, Wang WT, Chau YF, Tsai DP (2012) Tunable plasmonic resonance arising from broken-symmetric silver nano-beads with dielectric cores. J Opt 14:114010CrossRefGoogle Scholar
  27. Issak DM (2013) Plasmon resonance in nanoparticles. World Scientific, SingaporeGoogle Scholar
  28. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  29. Landau LD, Lifshitz EM, Pitaevskii LP (1984) Electrodynamics of continuous media. Pergamon, OxfordGoogle Scholar
  30. Martensson T, Carlberg P, Borgstr¨om M, Montelius L, Seifert W, Samuelson L (2004) Nanowire arrays defined by nanoimprint lithography. Nano Lett 4:699–702CrossRefGoogle Scholar
  31. Mayergoyz ID (2013) Plasmon resonance in nanoparticles. World Scientific, SingaporeCrossRefGoogle Scholar
  32. Nakayama K, Tanabe K, Atwater H (2008) Plasmonic nanoparticle-enhanced light absorption in GaAs solar cells. Appl Phys Lett 93:121904CrossRefGoogle Scholar
  33. Nehl CL, Grady NK, Goodrich GP, Tam F, Halas NJ, Hafner JH (2004) Scattering spectra of single gold nanoshells. Nano Lett 4:2355–2359CrossRefGoogle Scholar
  34. Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of optical resonance. Chem Phys Lett 288:243–247CrossRefGoogle Scholar
  35. Park JR, Choi DS, Gracias DH, Leong TG, Presser N, Stupian GW, Leung MS, Kim YK (2011) Fabrication and characterization of RF nanoantenna on a nanoliter-scale 3D microcontainer. Nanotechnology 22:455303CrossRefGoogle Scholar
  36. Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105CrossRefGoogle Scholar
  37. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422CrossRefGoogle Scholar
  38. Ruan Z, Qiu M (2006) Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances. Phys Rev Lett 96:233901CrossRefGoogle Scholar
  39. Sakamoto S, Philippe L, Blechelany M, Michler J, Asoh H, Ono S (2008) Ordered hexagonal array of Ay nanodots on Si substrate based on colloidal crystal templating. Nanotechnology 19:405304CrossRefGoogle Scholar
  40. Santbergen R, Temple TL, Liang R, Smets AHM, Swaaij RACMMV, Zeman M (2012) Application of plasmonic silver island films in thin-film silicon solar cells. J Opt 14:024010CrossRefGoogle Scholar
  41. Sardar R, Heap TB, Shumaker-Parry (2007) Versatile solid phase synthesis of gold nanoparticle dimers using an asymmetric functionalization approach. J Am Chem Soc 129:5356CrossRefGoogle Scholar
  42. Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86:063106CrossRefGoogle Scholar
  43. Spinelli P, Ferry VE, Groep JVD, Lare MV, Verschuuren MA, Schropp REI, Atwater HA, Polman A (2012) Plasmonic light trapping in thin-film Si solar cells. J Opt 14:02400CrossRefGoogle Scholar
  44. Sun Y, Wiley B, Li Z-Y, Xia Y (2004) Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys. J Am Chem Soc 126:9399–9406CrossRefGoogle Scholar
  45. Verschuuren M, Van Sprang H (2007) 3D photonic structures by sol–gel imprint lithography. Mater Res Soc Symp Proc 1002:N03–N05CrossRefGoogle Scholar
  46. Wu X, Liu YM, Yu ZY, Chen ZH, Gong H, Yin HZ (2013) Ultrathin nanodome solar cell incorporating an antireflection structure and metal grating. J Opt 15:055012CrossRefGoogle Scholar
  47. Xie F, Centeno A, Ryan MP, Riley DJ, Alford NM (2013) Au nanostructures by colloidal lithography: from quenching to extensive fluorescence enhancement. J Mater Chem B 1:536–543CrossRefGoogle Scholar
  48. Yang S, Cai W, Kong L, Lei Y (2010) Surface nanometer-scale patterning in realizing large-scale ordered arrays of metallic nanoshells with well-defined structures and controllable properties. Adv Funct Mater 20:2527–2533CrossRefGoogle Scholar
  49. Yu AA, Ostrikov K, Li EP (2009) Surface plasmon enhancement of optical absorption in thin-film silicon solar cells. Plasmonics 4:107CrossRefGoogle Scholar
  50. Yuriy AA, Wee SK (2011) Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells. Plasmonics 6:155–161CrossRefGoogle Scholar
  51. Zhang W, Ding F, Li WD, Wang Y, Hu J, Chou SY (2012) Giant and uniform fluorescence enhancement over large areas using plasmonic nanodots in 3D resonant cavity nanoantenna by nanoimprinting. Nanotechnology 23:225301CrossRefGoogle Scholar
  52. Zhou K, Jee SW, Guo Z, Liu S, Lee JH (2011) Enhanced absorptive characteristics of metal nanoparticle-coated silicon nanowires for solar cell applications. Appl Opt 50:G63–G68CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Yuan-Fong Chou Chau
    • 1
  • Chee Ming Lim
    • 1
  • Chien-Ying Chiang
    • 2
  • Nyuk Yoong Voo
    • 1
  • Nur Syafi’ie Muhammad Idris
    • 1
  • Siew Ung Chai
    • 1
  1. 1.Centre for Advanced Material and Energy SciencesUniversiti Brunei DarussalamGadongBrunei
  2. 2.Department of Electro-Optical EngineeringNational Taipei University of TechnologyTaipeiTaiwan

Personalised recommendations