A universal route for the simultaneous extraction and functionalization of cellulose nanocrystals from industrial and agricultural celluloses

  • Guo-Yin Chen
  • Hou-Yong Yu
  • Cai-Hong Zhang
  • Ying Zhou
  • Ju-Ming Yao
Research Paper


A simple route was designed to extract the cellulose nanocrystals (CNCs) with formate groups from industrial and agricultural celluloses like microcrystalline cellulose (MCC), viscose fiber, ginger fiber, and bamboo fiber. The effect of reaction time on the microstructure and properties of the CNCs was investigated in detail, while microstructure and properties of different CNCs were compared. The rod-like CNCs (MCC) with hundreds of nanometers in length and about 10 nm in width, nanofibrillated CNCs (ginger fiber bamboo fiber) with average width of 30 nm and the length of 1 μm, and spherical CNCs (viscose fiber) with the width of 56 nm were obtained by one-step HCOOH/HCl hydrolysis. The CNCs with improved thermal stability showed the maximum degradation temperature (T max) of 368.9–388.2 °C due to the introduction of formate groups (reducibility) and the increased crystallinity. Such CNCs may be used as an effective template for the synthesis of nanohybrids or reinforcing material for high-performance nanocomposites.


Cellulose nanocrystal Simple route Formate groups Thermal stability Nanocomposites Reinforced materials 



This work was funded by State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University (LK1428), The National Natural Science Foundation of China (51403187), The Public Technology Research Plan of Zhejiang Province, China, under Grant No. 2015C33111, Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ14E030007, “521” Talent Project of Zhejiang Sci-Tech University, and Open Fund in Top Priority Discipline of Zhejiang Province in Zhejiang Sci-Tech University (2015YXQN04, 2015YXQN11).

Supplementary material

11051_2016_3355_MOESM1_ESM.doc (7 mb)
Supplementary material 1 (DOC 7192 kb)


  1. Altaner CM et al (2014) Cellulose Iβ investigated by IR-spectroscopy at low temperatures. Cellulose 21:3171–3179CrossRefGoogle Scholar
  2. Bettaieb F et al (2015) Preparation and characterization of new cellulose nanocrystals from marine biomass Posidonia oceanica. Ind Crops Prod 72:175–182CrossRefGoogle Scholar
  3. Braun B, Dorgan JR (2009) Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromolecules 10(2):334–341CrossRefGoogle Scholar
  4. Camarero Espinosa S et al (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14(4):1223–1230CrossRefGoogle Scholar
  5. Cherian BM et al (2008) A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. J Agric Food Chem 56(14):5617–5627CrossRefGoogle Scholar
  6. de Morais Teixeira E et al (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17(3):595–606CrossRefGoogle Scholar
  7. Dong YY et al (2014) Compare study cellulose/Ag hybrids using fructose and glucose as reducing reagents by hydrothermal method. Carbohydr Polym 106:14–21CrossRefGoogle Scholar
  8. Elazzouzi-Hafraoui S et al (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57–65CrossRefGoogle Scholar
  9. Fan JS, Li YH (2012) Maximizing the yield of nanocrystalline cellulose from cotton pulp fiber. Carbohydr Polym 88(4):1184–1188CrossRefGoogle Scholar
  10. Fortunati E et al (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90(2):948–956CrossRefGoogle Scholar
  11. Haafiz MM et al (2013) Physicochemical characterization of cellulose nanowhiskers extracted from oil palm biomass microcrystalline cellulose. Mater Lett 113:87–89CrossRefGoogle Scholar
  12. Jiang F, Hsieh YL (2015) Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydr Polym 122:60–68CrossRefGoogle Scholar
  13. Khristova P, Kordsachia O, Khider T (2005) Alkaline pulping with additives of date palm rachis and leaves from Sudan. Bioresour Technol 96(1):79–85CrossRefGoogle Scholar
  14. Klemm D et al (2012) Fundamentals and analytical methods. In: Klemm D, Heinze T, Heinze U, Edgar KJ, Philipp B, Zugenmaier P (eds) Comprehensive cellulose chemistry. Wiley-VCH, Weinheim, pp 83–85Google Scholar
  15. Lazko J et al (2014) Well defined thermostable cellulose nanocrystals via two-step ionic liquid swelling-hydrolysis extraction. Cellulose 21(6):4195–4207CrossRefGoogle Scholar
  16. Li MC et al (2015a) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain Chem Eng 3(5):821–832CrossRefGoogle Scholar
  17. Li MC et al (2015b) Cellulose nanoparticles as modifiers for rheology and fluid loss in bentonite water-based fluids. ACS Appl Mater Interfaces 7(8):5006–5016CrossRefGoogle Scholar
  18. Lu P, Hsieh YL (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82(2):329–336CrossRefGoogle Scholar
  19. Lu Q et al (2015) A mechanochemical approach to manufacturing bamboo cellulose nanocrystals. J Mater Sci 50(2):611–619CrossRefGoogle Scholar
  20. Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2011) Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers. Carbohydr Polym 85(1):228–236CrossRefGoogle Scholar
  21. Martins DF et al (2015) The influence of the cellulose hydrolysis process on the structure of cellulose nanocrystals extracted from capim mombaça (Panicum maximum). Ind Crops Prod 65:496–505CrossRefGoogle Scholar
  22. Pääkkö M et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941CrossRefGoogle Scholar
  23. Saito T et al (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691CrossRefGoogle Scholar
  24. Satyamurthy P, Vigneshwaran N (2013) A novel process for synthesis of spherical nanocellulose by controlled hydrolysis of microcrystalline cellulose using anaerobic microbial consortium. Enzyme Microb Technol 52(1):20–25CrossRefGoogle Scholar
  25. Satyamurthy P et al (2011) Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohydr Polym 83(1):122–129CrossRefGoogle Scholar
  26. Seehra MS et al (2014) Hydrothermal treatment of microcrystalline cellulose under mild conditions: characterization of solid and liquid-phase products. Cellulose 21(6):4483–4495CrossRefGoogle Scholar
  27. Segal L et al (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794CrossRefGoogle Scholar
  28. Shin Y et al (2007) Simple preparation and stabilization of nickel nanocrystals on cellulose nanocrystal. Mater Lett 61(14):3215–3217CrossRefGoogle Scholar
  29. Shin Y et al (2008) Facile stabilization of gold–silver alloy nanoparticles on cellulose nanocrystal. J Phys Chem C 112(13):4844–4848CrossRefGoogle Scholar
  30. Silvério HA et al (2013) Extraction and characterization of cellulose nanocrystals from corncob for application as reinforcing agent in nanocomposites. Ind Crops Prod 44:427–436CrossRefGoogle Scholar
  31. Tan C et al (2015) Role of surface modification and mechanical orientation on property enhancement of cellulose nanocrystals/polymer nanocomposites. Eur Polym J 62:186–197CrossRefGoogle Scholar
  32. Tang Y et al (2014) Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellulose 21(1):335–346CrossRefGoogle Scholar
  33. Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48(12):3486–3493CrossRefGoogle Scholar
  34. Xu X et al (2013) Properties of novel polyvinyl alcohol/cellulose nanocrystals/silver nanoparticles blend membranes. Carbohydr Polym 98(2):1573–1577CrossRefGoogle Scholar
  35. Yan CF, Yu HY, Yao JM (2015) One-step extraction and functionalization of cellulose nanospheres from lyocell fibers with cellulose II crystal structure. Cellulose 22(6):3773–3788CrossRefGoogle Scholar
  36. Yu H et al (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1(12):3938–3944CrossRefGoogle Scholar
  37. Yu H et al (2014a) Reinforcement of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with cellulose nanocrystal/silver nanohybrids as bifunctional nanofillers. J Mater Chem B 2(48):8479–8489CrossRefGoogle Scholar
  38. Yu H, Yan C, Yao J (2014b) Fully biodegradable food packaging materials based on functionalized cellulose nanocrystals/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. RSC Adv 4(104):59792–59802CrossRefGoogle Scholar
  39. Yu HY et al (2014c) A facile one-pot route for preparing cellulose nanocrystal/zinc oxide nanohybrids with high antibacterial and photocatalytic activity. Cellulose 22:261–273CrossRefGoogle Scholar
  40. Zaki FA, Abdullah I, Ahmad I (2014) The physical and chemical natures of cellulose extracted from torch ginger stems. Int J Mater Eng Innov 5(1):48–60CrossRefGoogle Scholar
  41. Zhang X et al (2014) Direct immobilization of antibodies on dialdehyde cellulose film for convenient construction of an electrochemical immunosensor. Sens Actuator B 200:304–309CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and TextilesZhejiang Sci-Tech UniversityHangzhouChina
  2. 2.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghaiChina
  3. 3.National Engineering Lab for Textile Fiber Materials & Processing TechnologyZhejiang Sci-Tech UniversityHangzhouChina

Personalised recommendations