Self-organization of Au–CdSe hybrid nanoflowers at different length scales via bi-functional diamine linkers

  • Khaled Mohamed AbouZeid
  • Mona Bakr Mohamed
  • M. Samy El-Shall
Research Paper


This work introduces a series of molecular bridging bi-functional linkers to produce laterally self-assembled nanostructures of the Au–CdSe nanoflowers on different length scales ranging from 10 nm to 100 microns. Assembly of Au nanocrystals within amorphous CdSe rods is found in the early stages of the growth of the Au–CdSe nanoflowers. The Au–CdSe nanoflowers are formed through a one-pot low temperature (150 °C) process where CdSe clusters are adsorbed on the surface of the Au cores, and they then start to form multiple arms and branches resulting in flower-shaped hybrid nanostructures. More complex assembly at a micron length scale can be achieved by means of bi-functional capping agents with appropriate alkyl chain lengths, such as 1,12-diaminododecane.

Graphical Abstract


Au–CdSe Hybrid nanostructure Self-organization Nanoflowers Bi-functional linker Self-assembly 



We thank the National Science Foundation (Grants IIA-1445489 and CHE-1463989) for supporting this work.

Supplementary material

11051_2015_3299_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1275 kb)


  1. Abdelsayed V, El-Shall MS (2014) Direct observation of metal nanoparticles as heterogeneous nuclei for the condensation of supersaturated organic vapors: nucleation of size-selected aluminum nanoparticles in acetonitrile and n-hexane vapors. J Chem Phys 141:054710. doi: 10.1063/1.4890726 CrossRefGoogle Scholar
  2. AbouZeid KM, Mohamed MB, El-Shall MS (2011) Hybrid Au–CdSe and Ag–CdSe nanoflowers and core-shell nanocrystals via one-pot heterogeneous nucleation and growth. Small 7:3299–3307. doi: 10.1002/smll.201100688 CrossRefGoogle Scholar
  3. Bishop KJM, Wilmer CE, Soh S, Grzybowski BA (2009) Nanoscale forces and their uses in self-assembly. Small 5:1600–1630. doi: 10.1002/smll.200900358 CrossRefGoogle Scholar
  4. Boles MA, Talapin DV (2014) Connecting the dots. Science 344:1340–1341. doi: 10.1126/science.1256197 CrossRefGoogle Scholar
  5. Boneschanscher MP, Evers WH, Geuchies JJ, Altantzis T, Goris B, Rabouw FT, van Rossum SAP, van der Zant HSJ, Siebbeles LDA, Van Tendeloo G, Swart I, Hilhorst J, Petukhov AV, Bals S, Vanmaekelbergh D (2014) Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices. Science 344:1377–1380. doi: 10.1126/science.1252642 CrossRefGoogle Scholar
  6. Caruge JM, Halpert JE, Wood V, Bulovic V, Bawendi MG (2008) Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers. Nat Photon 2:247–250CrossRefGoogle Scholar
  7. Chen W-T, Yang T-T, Hsu Y-J (2008) Au–CdS core–shell nanocrystals with controllable shell thickness and photoinduced charge separation property. Chem Mater 20:7204–7206. doi: 10.1021/cm802074j CrossRefGoogle Scholar
  8. Costi R, Saunders AE, Elmalem E, Salant A, Banin U (2008) Visible light-induced charge retention and photocatalysis with hybrid CdSe–Au nanodumbbells. Nano Lett 8:637–641. doi: 10.1021/nl0730514 CrossRefGoogle Scholar
  9. Costi R, Cohen G, Salant A, Rabani E, Banin U (2009) Electrostatic force microscopy study of single Au–CdSe hybrid nanodumbbells: evidence for light-induced charge separation. Nano Lett 9:2031–2039. doi: 10.1021/nl900301v CrossRefGoogle Scholar
  10. Dawson A, Kamat PV (2001) Semiconductor-metal nanocomposites. Photoinduced fusion and photocatalysis of gold-capped TiO2 (TiO2/gold) nanoparticles. J Phys Chem B 105:960–966. doi: 10.1021/jp0033263 CrossRefGoogle Scholar
  11. Demortière A, Schaller RD, Li T, Chattopadhyay S, Krylova G, Shibata T, dos Santos Claro PC, Rowland CE, Miller JT, Cook R, Lee B, Shevchenko EV (2014) In situ optical and structural studies on photoluminescence quenching in CdSe/CdS/Au heterostructures. J Am Chem Soc 136:2342–2350. doi: 10.1021/ja4092616 CrossRefGoogle Scholar
  12. Figuerola A, Mv Huis, Zanella M, Genovese A, Marras S, Falqui A, Zandbergen HW, Cingolani R, Manna L (2010) Epitaxial CdSe–Au nanocrystal heterostructures by thermal annealing. Nano Lett 10:3028–3036. doi: 10.1021/nl101482q CrossRefGoogle Scholar
  13. Fink J, Kiely CJ, Bethell D, Schiffrin DJ (1998) Self-organization of nanosized gold particles. Chem Mater 10:922–926. doi: 10.1021/cm970702w CrossRefGoogle Scholar
  14. Grzelczak M, Vermant J, Furst EM, Liz-Marzán LM (2010) Directed self-assembly of nanoparticles. ACS Nano 4:3591–3605. doi: 10.1021/nn100869j CrossRefGoogle Scholar
  15. Guo X, Zhang S, Jiang B, Jin B, Tian Y (2008) Synthesis, characterization, and properties of the fringy CdSe wurtzite nanocrystals. J Phys Chem C 12:17899–17905. doi: 10.1021/jp806304r CrossRefGoogle Scholar
  16. Habas SE, Yang P, Mokari T (2008) Selective growth of metal and binary metal tips on CdS nanorods. J Am Chem Soc 130:3294–3295. doi: 10.1021/ja800104w CrossRefGoogle Scholar
  17. Hernández-Alonso MD, Fresno F, Suárez S, Coronado JM (2009) Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ Sci 2:1231–1257CrossRefGoogle Scholar
  18. Hu T, Isaacoff BP, Bahng JH, Hao C, Zhou Y, Zhu J, Li X, Wang Z, Liu S, Xu C, Biteen JS, Kotov NA (2014) Self-organization of plasmonic and excitonic nanoparticles into resonant chiral supraparticle assemblies. Nano Lett 14:6799–6810. doi: 10.1021/nl502237f CrossRefGoogle Scholar
  19. Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters†. J Phys Chem C 112:18737–18753. doi: 10.1021/jp806791s CrossRefGoogle Scholar
  20. Khalavka Y, Sönnichsen C (2008) Growth of gold tips onto hyperbranched CdTe nanostructures. Adv Mater 20:588–591. doi: 10.1002/adma.200701518 CrossRefGoogle Scholar
  21. Kim FS, Ren G, Jenekhe SA (2010) One-dimensional nanostructures of π-conjugated molecular systems: assembly, properties, and applications from photovoltaics, sensors, and nanophotonics to nanoelectronics†. Chem Mater 23:682–732. doi: 10.1021/cm102772x CrossRefGoogle Scholar
  22. Kim D, Kim WD, Kang MS, Kim S-H, Lee DC (2014) Self-organization of nanorods into ultra-long range two-dimensional monolayer end-to-end network. Nano Lett 15:714–720. doi: 10.1021/nl504259v CrossRefGoogle Scholar
  23. Kinge S, Crego-Calama M, Reinhoudt DN (2008) Self-assembling nanoparticles at surfaces and interfaces. ChemPhysChem 9:20–42. doi: 10.1002/cphc.200700475 CrossRefGoogle Scholar
  24. Klimov VI, Ivanov SA, Nanda J, Achermann M, Bezel I, McGuire JA, Piryatinski A (2007) Single-exciton optical gain in semiconductor nanocrystals. Nature 447:441–446. doi: 10.1038/nature05839 CrossRefGoogle Scholar
  25. Lee SH, Kim YJ, Park J (2007) Shape evolution of ZnTe nanocrystals: nanoflowers, nanodots, and nanorods. Chem Mater 19:4670–4675. doi: 10.1021/cm0711360 CrossRefGoogle Scholar
  26. Lee J-S, Shevchenko EV, Talapin DV (2008) Au–PbS core–shell nanocrystals: plasmonic absorption enhancement and electrical doping via intra-particle charge transfer. J Am Chem Soc 130:9673–9675. doi: 10.1021/ja802890f CrossRefGoogle Scholar
  27. Li L, Daou TJ, Texier I, Kim Chi TT, Liem NQ, Reiss P (2009) Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging. Chem Mater 21:2422–2429. doi: 10.1021/cm900103b CrossRefGoogle Scholar
  28. Liu M, Guyot-Sionnest P (2006) Preparation and optical properties of silver chalcogenide coated gold nanorods. J Mater Chem 16:3942–3945. doi: 10.1039/b607106f CrossRefGoogle Scholar
  29. Manna L, Milliron DJ, Meisel A, Scher EC, Alivisatos AP (2003) Controlled growth of tetrapod-branched inorganic nanocrystals. Nat Mater 2:382–385CrossRefGoogle Scholar
  30. Menagen G, Mocatta D, Salant A, Popov I, Dorfs D, Banin U (2008) Selective gold growth on CdSe seeded CdS nanorods. Chem Mater 20:6900–6902. doi: 10.1021/cm801702x CrossRefGoogle Scholar
  31. Mohamed MB, AbouZeid KM, Abdelsayed V, Aljarash AA, El-Shall MS (2010) Growth mechanism of anisotropic gold nanocrystals via microwave synthesis: formation of dioleamide by gold nanocatalysis. ACS Nano 4:2766–2772. doi: 10.1021/nn9016179 CrossRefGoogle Scholar
  32. Mokari T, Rothenberg E, Popov I, Costi R, Banin U (2004) Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304:1787–1790. doi: 10.1126/science.1097830 CrossRefGoogle Scholar
  33. Mokari T, Sztrum CG, Salant A, Rabani E, Banin U (2005) Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nat Mater 4:855–863. doi: 10.1038/nmat1505 CrossRefGoogle Scholar
  34. Naskar S, Schlosser A, Miethe JF, Steinbach F, Feldhoff A, Bigall NC (2015) Site-selective noble metal growth on CdSe nanoplatelets. Chem Mater 27:3159–3166. doi: 10.1021/acs.chemmater.5b01110 CrossRefGoogle Scholar
  35. Palmstrom CJ (1995) Epitaxy of dissimilar materials. Annu Rev Mater Sci 25:389–415. doi: 10.1146/ CrossRefGoogle Scholar
  36. Pradhan N, Xu H, Peng X (2006) Colloidal CdSe quantum wires by oriented attachment. Nano Lett 6:720–724. doi: 10.1021/nl052497m CrossRefGoogle Scholar
  37. Rajasekhar Pullabhotla VSR, Revaprasadu N (2009) A novel route to cysteine capped Au–CdSe hybrid nanoparticles. Mater Lett 63:2097–2099. doi: 10.1016/j.matlet.2009.06.057 CrossRefGoogle Scholar
  38. Reetz MT, Winter M, Tesche B (1997) Self-assembly of tetraalkylammonium salt-stabilized giant palladium clusters on surfaces. Chem Commun 2:147–148. doi: 10.1039/a606490f CrossRefGoogle Scholar
  39. Robinson RD, Sadtler B, Demchenko DO, Erdonmez CK, Wang L-W, Alivisatos AP (2007) Spontaneous superlattice formation in nanorods through partial cation exchange. Science 317:355–358. doi: 10.1126/science.1142593 CrossRefGoogle Scholar
  40. Sargent EH (2009) Infrared photovoltaics made by solution processing. Nat Photon 3:325–331CrossRefGoogle Scholar
  41. Saunders AE, Popov I, Banin U (2006) Synthesis of hybrid CdS–Au colloidal nanostructures†. J Phys Chem B 110:25421–25429. doi: 10.1021/jp065594s CrossRefGoogle Scholar
  42. Schipper ML, Iyer G, Koh AL, Cheng Z, Ebenstein Y, Aharoni A, Keren S, Bentolila LA, Li J, Rao J, Chen X, Banin U, Wu AM, Sinclair R, Weiss S, Gambhir SS (2009) Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 5:126–134. doi: 10.1002/smll.200800003 CrossRefGoogle Scholar
  43. Shaviv E, Banin U (2010) Synergistic effects on second harmonic generation of hybrid CdSe–Au nanoparticles. ACS Nano 4:1529–1538. doi: 10.1021/nn901778k CrossRefGoogle Scholar
  44. Shevchenko EV, Ringler M, Schwemer A, Talapin DV, Klar TA, Rogach AL, Feldmann J, Alivisatos AP (2008) Self-assembled binary superlattices of CdSe and Au nanocrystals and their fluorescence properties. J Am Chem Soc 130:3274–3275. doi: 10.1021/ja710619s CrossRefGoogle Scholar
  45. Sun Z, Yang Z, Zhou J, Yeung MH, Ni W, Wu H, Wang J (2009) A general approach to the synthesis of gold-metal sulfide core-shell and heterostructures. Angew Chem Int Ed 48:2881–2885. doi: 10.1002/anie.200806082 CrossRefGoogle Scholar
  46. Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2009) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458CrossRefGoogle Scholar
  47. Thanh NTK, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 114:7610–7630. doi: 10.1021/cr400544s CrossRefGoogle Scholar
  48. Thorkelsson K, Bai P, Xu T (2015) Self-assembly and applications of anisotropic nanomaterials: a review. Nano Today 10:48–66. doi: 10.1016/j.nantod.2014.12.005 CrossRefGoogle Scholar
  49. Whetten RL, Khoury JT, Alvarez MM, Murthy S, Vezmar I, Wang ZL, Stephens PW, Cleveland CL, Luedtke WD, Landman U (1996) Nanocrystal gold molecules. Adv Mater 3:428–433. doi: 10.1002/adma.19960080513 CrossRefGoogle Scholar
  50. Yang J, Elim HI, Zhang Q, Lee JY, Ji W (2006) Rational synthesis, self-assembly, and optical properties of pbs–Au heterogeneous nanostructures via preferential deposition. J Am Chem Soc 128:11921–11926. doi: 10.1021/ja062494r CrossRefGoogle Scholar
  51. Yong KT, Sahoo Y, Swihart MT, Prasad PN (2006) Growth of CdSe quantum rods and multipods seeded by noble-metal nanoparticles. Adv Mater 18:1978–1982. doi: 10.1002/adma.200600368 CrossRefGoogle Scholar
  52. Yu C, Wang H (2010) Light-induced bipolar-resistance effect based on metal–oxide–semiconductor structures of Ti/SiO2/Si. Adv Mater 22:966–970. doi: 10.1002/adma.200903070 CrossRefGoogle Scholar
  53. Yuhas BD, Habas SE, Fakra SC, Mokari T (2009) Probing compositional variation within hybrid nanostructures. ACS Nano 3:3369–3376. doi: 10.1021/nn901107p CrossRefGoogle Scholar
  54. Zeng H, Cai W, Liu P, Xu X, Zhou H, Klingshirn C, Kalt H (2008) ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal − semiconductor interface, improvement of blue emission and photocatalysis. ACS Nano 2:1661–1670. doi: 10.1021/nn800353q CrossRefGoogle Scholar
  55. Zeng J, Huang J, Liu C, Wu CH, Lin Y, Wang X, Zhang S, Hou J, Xia Y (2010) Gold-based hybrid nanocrystals through heterogeneous nucleation and growth. Adv Mater 22:1936–1940. doi: 10.1002/adma.200903982 CrossRefGoogle Scholar
  56. Zhang J, Tang Y, Lee K, Ouyang M (2010) Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches. Science 327:1634–1638. doi: 10.1126/science.1184769 CrossRefGoogle Scholar
  57. Zhong H, Zhou Y, Yang Y, Yang C, Li Y (2007) Synthesis of Type II CdTe–CdSe nanocrystal heterostructured multiple-branched rods and their photovoltaic applications. J Phys Chem C 111:6538–6543. doi: 10.1021/jp0709407 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Khaled Mohamed AbouZeid
    • 1
    • 2
  • Mona Bakr Mohamed
    • 2
  • M. Samy El-Shall
    • 1
    • 3
  1. 1.Department of ChemistryVirginia Commonwealth UniversityRichmondUSA
  2. 2.National Institute of Laser Enhanced Science (NILES)Cairo UniversityGizaEgypt
  3. 3.Department of Chemistry, Faculty of Science King Abdulaziz UniversityJeddah Saudi Arabia

Personalised recommendations