Advertisement

Comparative effects on rat primary astrocytes and C6 rat glioma cells cultures after 24-h exposure to silver nanoparticles (AgNPs)

  • Samuel Salazar-García
  • Ana Sonia Silva-Ramírez
  • Manuel A. Ramirez-Lee
  • Hector Rosas-Hernandez
  • Edgar Rangel-López
  • Claudia G. Castillo
  • Abel Santamaría
  • Gabriel A. Martinez-Castañon
  • Carmen Gonzalez
Research Paper

Abstract

The aim of this work was to compare the effects of 24-h exposure of rat primary astrocytes and C6 rat glioma cells to 7.8 nm AgNPs. Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor and current treatments lead to diverse side-effects; for this reason, it is imperative to investigate new approaches, including those alternatives provided by nanotechnology, like nanomaterials (NMs) such as silver nanoparticles. Herein, we found that C6 rat glioma cells, but no primary astrocytes, decreased cell viability after AgNPs treatment; however, both cell types diminished their proliferation. The decrease of glioma C6 cells proliferation was related with necrosis, while in primary astrocytes, the decreased proliferation was associated with the induction of apoptosis. The ionic control (AgNO3) exerted a different profile than AgNPs; the bulk form did not modify the basal effect in each determination, whereas cisplatin, a well-known antitumoral drug used as a comparative control, promoted cytotoxicity in both cell types at specific concentrations. Our findings prompt the need to determine the fine molecular and cellular mechanisms involved in the differential biological responses to AgNPs in order to develop new tools or alternatives based on nanotechnology that may contribute to the understanding, impact and use of NMs in specific targets, like glioblastoma cells.

Keywords

Silver nanoparticles Glioma Primary astrocytes Cytotoxicity Proliferation Apoptosis 

Notes

Acknowledgments

We want to thank to M.Sc. Hilda Minerva Gonzalez Sanchez and Irma Gonzalez Curiel for technical assistance. This work was supported by Consejo Nacional de Ciencia y Tecnologia (CONACyT) through the fellowships awarded to the students Samuel Salazar-García (342918), Manuel Alejandro Ramirez Lee (318669), Hector Rosas-Hernandez (317768), Ana Sonia Silva-Ramírez (230537), and support grants CONACyT CB-169020 and SEP/CONACyT CB-134595.

Compliance with ethical standards

Conflict of interest

None.

Supplementary material

11051_2015_3257_MOESM1_ESM.docx (390 kb)
Supplementary material 1 (DOCX 390 kb)

References

  1. Abe K, Matsuki N (2000) Measurement of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction activity and lactate dehydrogenase release using MTT. Neurosci Res 38(4):325–329CrossRefGoogle Scholar
  2. Araque A, Navarrete M (2010) Glial cells in neuronal network function. Philos Trans R Soc Lond B 365(1551):2375–2381. doi: 10.1098/rstb.2009.0313 CrossRefGoogle Scholar
  3. Asharani PV, Hande MP, Valiyaveettil S (2009a) Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 10:65. doi: 10.1186/1471-2121-10-65 CrossRefGoogle Scholar
  4. AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil D (2009b) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290. doi: 10.1021/nn800596w CrossRefGoogle Scholar
  5. Au C, Mutkus L, Dobson A, Riffle J, Lalli J, Aschner M (2007) Effects of nanoparticles on the adhesion and cell viability on astrocytes. Biol Trace Elem Res 120(1–3):248–256. doi: 10.1007/s12011-007-0067-z CrossRefGoogle Scholar
  6. Bae E, Cheun Lee B, Kim Y (2013) Effect of agglomeration of silver nanoparticle on nanotoxicity depression. Korean J Chem Eng 30(2):364–368CrossRefGoogle Scholar
  7. Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H (2012) Toxicity of silver nanoparticles—nanoparticle or silver ion? Toxicol Lett 208(3):286–292. doi: 10.1016/j.toxlet.2011.11.002 CrossRefGoogle Scholar
  8. Bergs JW, Wacker MG, Hehlgans S, Piiper A, Multhoff G, Rödel C, Rödel F (2015) The role of recent nanotechnology in enhancing the efficacy of radiation therapy. Biochim Biophys Acta 1856(1):130–143. doi: 10.1016/j.bbcan.2015.06.008 Google Scholar
  9. Bopp SK, Lettieri T (2008) Comparison of four different colorimetric and fluorometric cytotoxicity assays in a zebrafish liver cell line. BMC Pharmacol 8:8. doi: 10.1186/1471-2210-8-8 CrossRefGoogle Scholar
  10. Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176(1):1–12. doi: 10.1016/j.toxlet.2007.10.004 CrossRefGoogle Scholar
  11. Chintala SK, Ali-Osman F, Mohanam S, Rayford A, Go Y, Gokaslan ZL, Rao JS (1997) Effect of cisplatin and BCNU on MMP-2 levels in human glioblastoma cell lines in vitro. Clin Exp Metastasis 15(4):361–367CrossRefGoogle Scholar
  12. Clarke J, Butowski N, Chang S (2010) Recent advances in therapy for glioblastoma. Arch Neurol 67(3):279–283. doi: 10.1001/archneurol.2010.5 CrossRefGoogle Scholar
  13. Collier AC, Pritsos CA (2003) The mitochondrial uncoupler dicumarol disrupts the MTT assay. Biochem Pharmacol 66(2):281–287CrossRefGoogle Scholar
  14. Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89(2):271–277CrossRefGoogle Scholar
  15. Espinosa-Cristobal LF, Martinez-Castañon GA, Loyola-Rodriguez JP (2013) Toxicity, distribution, and accumulation of silver nanoparticles in Wistar rats. J Nanopart Res 15:1702CrossRefGoogle Scholar
  16. Fiorino J.D. (2010). Voluntary initiatives, regulation and nanotechnology oversight: charting a path, Project on Emerging NanotechnologiesGoogle Scholar
  17. Florea AM, Büsselberg D (2011) Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel) 3(1):1351–1371. doi: 10.3390/cancers3011351 CrossRefGoogle Scholar
  18. Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H (2009) PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett 190(2):156–162. doi: 10.1016/j.toxlet.2009.07.009 CrossRefGoogle Scholar
  19. Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11:11. doi: 10.1186/1743-8977-11-11 CrossRefGoogle Scholar
  20. Hadrup N, Lam HR (2014) Oral toxicity of silver ions, silver nanoparticles and colloidal silver—a review. Regul Toxicol Pharmacol 68(1):1–7. doi: 10.1016/j.yrtph.2013.11.002 CrossRefGoogle Scholar
  21. Hernández-Pedro NY, Rangel-López E, Magaña-Maldonado R, de la Cruz VP, del Angel AS, Pineda B, Sotelo J (2013) Application of nanoparticles on diagnosis and therapy in gliomas. Biomed Res Int 2013:351031. doi: 10.1155/2013/351031 CrossRefGoogle Scholar
  22. Jessen KR (2004) Glial cells. Int J Biochem Cell Biol 36:1861–1867CrossRefGoogle Scholar
  23. Jovčevska I, Kočevar N, Komel R (2013) Glioma and glioblastoma—how much do we (not) know? Mol Clin Oncol 1(6):935–941. doi: 10.3892/mco.2013.172 Google Scholar
  24. Kawata K, Osawa M, Okabe S (2009) In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol 43(15):6046–6051CrossRefGoogle Scholar
  25. Kim TH, Kim M, Park HS, Shin US, Gong MS, Kim HW (2012) Size-dependent cellular toxicity of silver nanoparticles. J Biomed Mater Res A 100(4):1033–1043. doi: 10.1002/jbm.a.34053 CrossRefGoogle Scholar
  26. Liu P, Huang Z, Chen Z, Xu R, Wu H, Zang F, Gu N (2013) Silver nanoparticles: a novel radiation sensitizer for glioma? Nanoscale 5(23):11829–11836. doi: 10.1039/c3nr01351k CrossRefGoogle Scholar
  27. Luther EM, Koehler Y, Diendorf J, Epple M, Dringen R (2011) Accumulation of silver nanoparticles by cultured primary brain astrocytes. Nanotechnology 22(37):375101. doi: 10.1088/0957-4484/22/37/375101 CrossRefGoogle Scholar
  28. Luther EM, Schmidt MM, Diendorf J, Epple M, Dringen R (2012) Upregulation of metallothioneins after exposure of cultured primary astrocytes to silver nanoparticles. Neurochem Res 37(8):1639–1648. doi: 10.1007/s11064-012-0767-4 CrossRefGoogle Scholar
  29. Nguyen KC, Seligy VL, Massarsky A, et al (2012) Comparison of toxicity of uncoated and coated silver nanoparticles. J Phys 429:012025Google Scholar
  30. Nzengue Y, Lefebvre E, Cadet J, Favier A, Rachidi W, Steiman R, Guiraud P (2009) Metallothionein expression in HaCaT and C6 cell lines exposed to cadmium. J Trace Elem Med Biol 23(4):314–323. doi: 10.1016/j.jtemb.2009.05.005 CrossRefGoogle Scholar
  31. Qu D, Sun W, Chen Y, Zhou J, Liu C (2014) Synthesis and in vitro antineoplastic evaluation of silver nanoparticles mediated by Agrimoniae herba extract. Int J Nanomedicine 9:1871–1882. doi: 10.2147/IJN.S58732 Google Scholar
  32. Ramírez-Lee MA, Rosas-Hernández H, Salazar-García S, Gutiérrez-Hernández JM, Espinosa-Tanguma R, González FJ, González C (2014) Silver nanoparticles induce anti-proliferative effects on airway smooth muscle cells. Role of nitric oxide and muscarinic receptor signaling pathway. Toxicol Lett 224(2):246–256. doi: 10.1016/j.toxlet.2013.10.027 CrossRefGoogle Scholar
  33. Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35(7):583–592. doi: 10.1039/b502142c CrossRefGoogle Scholar
  34. Rosas-Hernández H, Jiménez-Badillo S, Martínez-Cuevas PP, Gracia-Espino E, Terrones H, Terrones M, González C (2009) Effects of 45-nm silver nanoparticles on coronary endothelial cells and isolated rat aortic rings. Toxicol Lett 191(2–3):305–313. doi: 10.1016/j.toxlet.2009.09.014 CrossRefGoogle Scholar
  35. Scott JN, Rewcastle NB, Brasher PM, Fulton D, Hagen NA, MacKinnon JA, Forsyth P (1998) Long-term glioblastoma multiforme survivors: a population-based study. Can J Neurol Sci 25(3):197–201Google Scholar
  36. Sittampalam, G.S, Gal-Edd N, Arkin M, et al (eds) (2004) Assay Guidance Manual [Internet]. Bethesda (MD): Eli Lilly and Company and the National Center for Advancing Translational Sciences. Available from: http://www.ncbi.nlm.nih.gov/books/NBK144065/
  37. Skytt DM, Madsen KK, Pajęcka K, Schousboe A, Waagepetersen HS (2010) Characterization of primary and secondary cultures of astrocytes prepared from mouse cerebral cortex. Neurochem Res 35(12):2043–2052. doi: 10.1007/s11064-010-0329-6 CrossRefGoogle Scholar
  38. Taguchi T, Nazneen A, Abid MR, Razzaque MS (2005) Cisplatin-associated nephrotoxicity and pathological events. Contrib Nephrol 148:107–121. doi: 10.1159/000086055 CrossRefGoogle Scholar
  39. Wang H, Ubl JJ, Stricker R, Reiser G (2002) Thrombin (PAR-1)-induced proliferation in astrocytes via MAPK involves multiple signaling pathways. Am J Physiol Cell Physiol 283(5):C1351–C1364. doi: 10.1152/ajpcell.00001.2002 CrossRefGoogle Scholar
  40. Wang R, Chen C, Yang W, Shi S, Wang C, Chen J (2013) Enhancement effect of cytotoxicity response of silver nanoparticles combined with thermotherapy on C6 rat glioma cells. J Nanosci Nanotechnol 13(6):3851–3854CrossRefGoogle Scholar
  41. Xin L, Wang J, Fan G, Che B, Wu Y, Guo S, Tong J (2015) Oxidative stress and mitochondrial injury-mediated cytotoxicity induced by silver nanoparticles in human A549 and HepG2 cells. Environ Toxicol. doi: 10.1002/tox.22171 Google Scholar
  42. Xu F, Piett C, Farkas S, Qazzaz M, Syed NI (2013) Silver nanoparticles (AgNPs) cause degeneration of cytoskeleton and disrupt synaptic machinery of cultured cortical neurons. Mol Brain 6:29. doi: 10.1186/1756-6606-6-29 CrossRefGoogle Scholar
  43. Xue Y, Zhang T, Zhang B, Gong F, Huang Y, Tang M (2015) Cytotoxicity and apoptosis induced by silver nanoparticles in human liver HepG2 cells in different dispersion media. J Appl To xicol. doi: 10.1002/jat.3199 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Samuel Salazar-García
    • 1
  • Ana Sonia Silva-Ramírez
    • 1
  • Manuel A. Ramirez-Lee
    • 1
  • Hector Rosas-Hernandez
    • 1
  • Edgar Rangel-López
    • 2
  • Claudia G. Castillo
    • 3
  • Abel Santamaría
    • 2
  • Gabriel A. Martinez-Castañon
    • 4
  • Carmen Gonzalez
    • 1
  1. 1.Facultad de Ciencias QuimicasUniversidad Autonoma de San Luis PotosiSan Luis PotosiMexico
  2. 2.Laboratorio de Aminoacidos ExcitadoresInstituto Nacional de Neurologia y Neurocirugia Manuel Velasco SuárezMexicoMexico
  3. 3.Facultad de Medicina, Universidad Autonoma de San Luis PotosiSan Luis PotosiMexico
  4. 4.Facultad de EstomatologiaUniversidad Autonoma de San Luis PotosiSan Luis PotosiMexico

Personalised recommendations