Synthesis, optical properties and photodegradation for methylene blue of Ni-vanadate K2Ni(VO3)4 nanoparticles

Research Paper


A Ni2+-containing vanadate, K2Ni(VO3)4 was developed as a new visible-light-driven photocatalyst. The nanoparticles were prepared by the modified Pechini method. The sample was characterized by the measurements such as X-ray powder diffraction, scanning electron microscope, and UV–Vis absorption spectrum. The photocatalytic activity of K2Ni(VO3)4 nanoparticles was evaluated by the photodegradation of methylene blue under visible-light irradiation in air. K2Ni(VO3)4 shows a photocatalytic activity due to the efficient absorption in the UV–Visible-light wavelength region with a narrowed band-gap energy of 2.08 eV and an indirectly allowed electronic transition. These results indicate that this vanadate garnet could be a potential photocatalyst driven by visible light. The effective photocatalytic activity was discussed on the basis of the special structural characteristic such as heavily distorted NiO6, rich, activated optical centers with tunnel structure for high photocatalytic capacity, and discussed on the basis of the photoluminescence and the decay lifetime.


Semiconductors Catalysis Electronic band structure Optical absorption and reflection Luminescence 



This work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China.


  1. Biswas SK, Dhak D, Pathak A, Pramanik P (2008) Chemical synthesis of environment-friendly nanosized yellow titanate pigments. Mater Res Bull 43:665CrossRefGoogle Scholar
  2. Butler MA, Ginley DS (1978) Prediction of flat band potentials at semiconductor-electrolyte interfaces from atomic electronegativities. J Electrochem Soc 125:228CrossRefGoogle Scholar
  3. Carley AF, Jackson SD, O’Shea JN, Roberts MW (1999) The formation and characterisation of Ni3+-an X-ray photoelectron spectroscopic investigation of potassium-doped Ni(110)–O. Surf Sci 440:868CrossRefGoogle Scholar
  4. Chadha TS, Park J, An WJ, Biswas P (2014) Gold nanocage coupled single crystal TiO2 nanostructures for near-infrared water photolysis. J Nanopart Res 16:2696CrossRefGoogle Scholar
  5. Chen W, Duan GR, Liu TY, Jia ZM, Liu XH, Chen SM, Yang XJ (2015) Synthesis of homogeneous one-dimensional NixCd1−xS nanorods with enhanced visible-light response by ethanediamine-assisted decomposition of complex precursors. J Mater Sci 50:3920CrossRefGoogle Scholar
  6. Dang XM, Zhang XF, Chen YT, Dong XL, Wang GW, MaC Zhang XX, Ma HC, Xue M (2015) Preparation of β-Bi2O3/g-C3N4 nanosheet p-n junction for enhanced photocatalytic ability under visible light illumination. J Nanopart Res 17:93CrossRefGoogle Scholar
  7. Elazab HA, Moussa S, Gupton BF, El-Shall MS (2014) Microwave-assisted synthesis of Pd nanoparticles supported on Fe3O4, Co3O4, and Ni(OH)2 nanoplates and catalysis application for CO oxidation. J Nanopart Res 16:2477CrossRefGoogle Scholar
  8. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69CrossRefGoogle Scholar
  9. Kandula S, Jeevanandam P (2014) Visible-light-induced photodegradation of methylene blue using ZnO/CdS heteronanostructures synthesized through a novel thermal decomposition approach. J Nanopart Res 16:2452CrossRefGoogle Scholar
  10. Karahaliloglu Z, Hacker C, Demirbilek M, Seide G, Denkbas EB, Gries T (2014) Photocatalytic performance of melt-electrospun polypropylene fabric decorated with TiO2 nanoparticles. J Nanopart Res 16:2615CrossRefGoogle Scholar
  11. Kudo A, Niishiro R, Iwase A, Kato H (2007) Effects of doping of metal cations on morphology, activity, and visible light response of photocatalysts. Chem Phys 339:104CrossRefGoogle Scholar
  12. Kumagai N, Fujiwara T, Tanno K, Horiba T (1996) Physical and electrochemical characterization of quaternary Li-Mn-V-O spinel as positive materials for rechargeable lithium batteries. J Electrochem Soc 143:1007CrossRefGoogle Scholar
  13. Lázaro-Navas S, Prashar S, Fajardo M, Gómez-Ruiz S (2015) Visible light-driven photocatalytic degradation of the organic pollutant methylene blue with hybrid palladium–fluorine-doped titanium oxide nanoparticles. J Nanopart Res 17:94CrossRefGoogle Scholar
  14. Li HR, Zhou J, Zhang XB, Zhou K, Qu SX, Wang JX, Lu X, Weng J, Feng B (2015) Constructing stable NiO/N-doped TiO2 nanotubes photocatalyst with enhanced visible-light photocatalytic activity. J Mater Sci 26:2571Google Scholar
  15. Liao JH, Sigala C, Guyomard D, Piffard Y (1996) K2Mn3(OH)2(VO4)2: a new two-dimensional potassium manganese(II) hydroxyvanadate. Acta Crystallogr Sect C 52:284CrossRefGoogle Scholar
  16. Lin XP, Huang FQ, Wang WD, Wang YM, Xia YJ, Shi JL (2006) Photocatalytic activities of M2Sb2O7 (M = Ca, Sr) for degrading methyl orange. Appl Catal A 313:218CrossRefGoogle Scholar
  17. Liu YH, Wang ZL, Fan WB, Geng ZR, Feng LB (2014) Enhancement of the photocatalytic performance of Ni-loaded TiO2 photocatalyst under sunlight. Ceram Inter 40:3887CrossRefGoogle Scholar
  18. Liu JF, Li HY, Zong LL, Li QY, Wang XD, Zhang M, Yang JJ (2015) Photocatalytic oxidation of propylene on La and N codoped TiO2 nanoparticles. J Nanopart Res 17:114CrossRefGoogle Scholar
  19. Lu DZ, Fang PF, Liu Y, Liu Z, Liu XZ, Gao YP, Chen FT, Niu F (2014) A facile one-pot synthesis of gadolinium doped TiO2-based nanosheets with efficient visible light-driven photocatalytic performance. J Nanopart Res 16:2636CrossRefGoogle Scholar
  20. Manikandan P, Ananth MV, Kumar TP, Raju M, Periasamy P, Manimaran K (2011) Solution combustion synthesis of layered LiNi0.5Mn0.5O2 and its characterization as cathode material for lithium-ion cells. J Power Sources 196:10148CrossRefGoogle Scholar
  21. Márquez-Herrera A, Ovando-Medina VM, Castillo-Reyes BE, Meléndez-Lira M, Zapata-Torres M, Saldaña N (2014) A novel synthesis of SrCO3–SrTiO3 nanocomposites with high photocatalytic activity. J Nanopart Res 16:2804CrossRefGoogle Scholar
  22. Murphy AB, Barnes PRF, Randeniya LK, Plumb IC, Grey IE, Horne MD, Glasscock JA (2006) Efficiency of solar water splitting using semiconductor electrodes. Int J Hydrogen Energy 31:1999CrossRefGoogle Scholar
  23. Nakajima T, Isobe M, Tsuchiya T, Ueda Y, Kumagai T (2009) A revisit of photoluminescence property for vanadate oxides AVO3 (A:K, Rb and Cs) and M3V2O8 (M: Mg and Zn). J Lumin 129:1598CrossRefGoogle Scholar
  24. Nogueira AE, Lima ARF, Longo E, Leite ER, Camargo ER (2014) Structure and photocatalytic properties of Nb-doped Bi12TiO20 prepared by the oxidant peroxide method (OPM). J Nanopart Res 16:2653CrossRefGoogle Scholar
  25. Ohko Y, Hashimoto K, Fujishima A (1997) Kinetics of photocatalytic reactions under extremely low-intensity UV illumination on titanium dioxide thin films. J Phys Chem A 101:8057CrossRefGoogle Scholar
  26. Prakash D, Masuda Y, Sanjeeviraja C (2013) Synthesis and structure refinement studies of LiNiVO4 electrode material for lithium rechargeable batteries. Ionics 19:17CrossRefGoogle Scholar
  27. Ramadan W, Shaikh PA, Ebrahim S, Ramadan A, Hannoyer B, Jouen S, Sauvage X, Ogale S (2013) Highly efficient photocatalysis by BiFeO3/α(γ)-Fe2O3 ferromagnetic nano p/n junctions formed by dopant-induced phase separation. J Nanopart Res 15:1848CrossRefGoogle Scholar
  28. Rossell MD, Agrawal P, Borgschulte A, Hébert C, Passerone D, Ern R (2015) Direct evidence of surface reduction in monoclinic BiVO4. Chem Mater 27:3593CrossRefGoogle Scholar
  29. Song XC, Li WT, Huang WZ, Zhou H, Yin HY, Zheng YF (2015) Enhanced photocatalytic activity of cadmium-doped Bi2WO6 nanoparticles under simulated solar light. J Nanopart Res 17:134CrossRefGoogle Scholar
  30. Su YG, Lang JY, Cao N, Wang TT, Zhu BL, Wang XJ (2015) Morphological reconstruction and photocatalytic enhancement of NaTaO3 nanocrystals via Cu2O loading. J Nanopart Res 17:63CrossRefGoogle Scholar
  31. Wang DF, Tang JW, Zou ZG, Ye JH (2005) Photophysical and photocatalytic properties of a new series of visible-light-driven photocatalysts M3V2O8 (M = Mg, Ni, Zn). Chem Mater 17:5177CrossRefGoogle Scholar
  32. Weng BC, Xu FH, Xu JG (2014) Hierarchical structures constructed by BiOX (X = Cl, I) nanosheets on CNTs/carbon composite fibers for improved photocatalytic degradation of methyl orange. J Nanopart Res 16:2766CrossRefGoogle Scholar
  33. Witzke T, Zhen S, Seff K, Doering T, Nasdala L, Kolitsch U (2001) Ronneburgite, K2MnV4O12, a new mineral from Ronneburg, Thuringia, Germany: description and crystal structure. Am Mineral 86:1081CrossRefGoogle Scholar
  34. Xiong JH, Wu WM, Liu YH, Shen LJ, Wu L (2015) Fabrication of hierarchical CdS nanosphere via one-pot process for photocatalytic water splitting. J Nanopart Res 17:55CrossRefGoogle Scholar
  35. Yao WF, Ye JH (2006) Photocatalytic properties of a novel layered photocatalys CsLaSrNb2NiO9. Catal Lett 110:139CrossRefGoogle Scholar
  36. Yin H, Tsuzuki T, Millington KR, Casey PS (2014) A comparative interlaboratory study on photocatalytic activity of commercial ZnO and CeO2 nanoparticles. J Nanopart Res 16:2641CrossRefGoogle Scholar
  37. Zhang XH (2014) Synthesis of Ni doped InVO4 for enhanced photocatalytic hydrogen evolution using glucose as electron donor. Catal Lett 144:1253CrossRefGoogle Scholar
  38. Zhang F, Song WJ, Zhao ZS, Cheng Y (2014a) Photo-catalytic properties of doped or substituted polyaniline-coated Fe3O4 nanoparticles. J Nanopart Res 16:2666CrossRefGoogle Scholar
  39. Zhang YY, Guo YP, Duan H, Li H, Sun CY, Liu HZ (2014b) Facile synthesis of V4+ self-doped, [010] oriented BiVO4 nanorods with highly efficient visible light-induced photocatalytic activity. Phys Chem Chem Phys 16:24519CrossRefGoogle Scholar
  40. Zhang FF, Liu W, Liu YS, Wang JY, Ji GB (2015) Fabrication and enhanced photocatalytic properties of Pt@SiO2@TiO2 composites by surface plasma resonance from Pt nanoparticles. J Nanopart Res 17:62CrossRefGoogle Scholar
  41. Zhu HL, Chen DM, Yue D, Wang ZH, Ding H (2014) In-situ synthesis of g-C3N4-P25 TiO2 composite with enhanced visible light photoactivity. J Nanopart Res 16:2632CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.College of Chemistry, Chemical Engineering and Materials ScienceSoochow UniversitySuzhouChina

Personalised recommendations