Skip to main content
Log in

Optimized spacer layer thickness for plasmonic-induced enhancement of photocurrent in a-Si:H

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Plasmonic interfaces consisting of silver nanoparticles of different sizes (50–100 nm) have been processed by the self-assembled dewetting technique and integrated to hydrogenated amorphous silicon (a-Si:H) using SiNx spacer layers to investigate the dependence of optical trapping enhancement on spacer layer thickness through the enhancements in photocurrent. Samples illuminated from the a-Si:H side exhibit a localized surface plasmon resonance (LSPR) that is red-shifted with the increasing particle size and broadened into the red with the increasing spacer layer thickness. The photocurrent measured in a-Si:H is not only consistent with the red-shift and broadening of the LSPR, but exhibits critical dependence on the spacer layer thickness also. The samples with plasmonic interfaces and a SiNx spacer layer exhibit appreciable enhancement of photocurrent compared with flat a-Si:H reference depending on the size of the Ag nanoparticle. Simulations conducted on one-dimensional square structures exhibit electric fields that are localized near the plasmonic structures but extend appreciably into the higher refractive index a-Si:H. These simulations produce a clear red-shift and broadening of extinction spectra for all spacer layer thicknesses and predict an enhancement in photocurrent in agreement with experimental results. The spectral dependence of photocurrent for six plasmonic interfaces with different Ag nanoparticle sizes and spacer layer thicknesses are correlated with the optical spectra and compared with the simulations to predict an optimal spacer layer thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aberle AG (2001) Overview on SiN surface passivation of crystalline silicon solar cells. Sol Energy Mater Sol Cells 65:239–248

    Article  Google Scholar 

  • Atrel AC, García-Etxarri A, Alaeian H, Dionne JA (2012) Toward high-efficiency solar upconversion with plasmonic nanostructures. J Opt 14:024008

    Article  Google Scholar 

  • Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  Google Scholar 

  • Beltran-Huarac J, Wang J, Tanaka H, Jadwisienczak WM, Weiner BR, Morell G (2013) Stability of the Mn photoluminescence in bifunctional ZnS:0.05 Mn nanoparticles. J Appl Phys 114:053106

    Article  Google Scholar 

  • Catchpole KR, Polman A (2008a) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:191113

    Article  Google Scholar 

  • Catchpole KR, Polman A (2008b) Plasmonic solar cells. Opt Express 16:21799

    Article  Google Scholar 

  • Cho EC (2007) Silicon quantum dots in a dielectric matrix for all-Si tandem solar cells. Adv Optoelectron 2007:69578

    Article  Google Scholar 

  • Eminian C, Haug FJ, Cubero O, Niquille X, Ballif C (2011) Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles. Progr Photovolt 19:260

    Article  Google Scholar 

  • Gangopadhyay U, Kim K, Mangalaraj D, Yi J (2004) Low cost CBD ZnS antireflection coating on large area commercial mono-crystalline silicon solar cells. Appl Surf Sci 230:364–370

    Article  Google Scholar 

  • Ghannam MY, Abouelsaood AA, Alomar AS, Poortmans J (2010) Analysis of thin-film silicon solar cells with plasma textured front surface and multi-layer porous silicon back reflector. Sol Energy Mater Sol Cells 94:850–856

    Article  Google Scholar 

  • Granet G, Guizal B (1996) Efficient implementation of the coupled wave method for metallic lamellar gratings in TM polarization. J Opt Soc Am A 13:1019–1023

    Article  Google Scholar 

  • Guler U, Turan R (2010) Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles. Opt Express 18:17322–17338

    Article  Google Scholar 

  • Ho C, Yeh D, Su V, Yang C, Yang P, Pu M, Kuan C, Cheng I, Lee S (2012) Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells. J Appl Phys 112:023113

    Article  Google Scholar 

  • Johnson PB, Christy RW (1972) Optical Constants of the Noble Metals. Phys Rev B 6:4370

    Article  Google Scholar 

  • Lahoz F, Perez-Rodriguez C, Hernandez SE, Martin IR, Lavin V, Rodriguez-Mendoza UR (2011) Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells. Sol Energy Mater Sol Cells 95:1671–1677

    Article  Google Scholar 

  • Lalanne P, Jurek MP (1998) Computation of the near-field pattern with the coupled-wave method for TM polarization. J Mod Opt 45:1357–1374

    Article  Google Scholar 

  • Lalanne P, Morris GM (1996) Highly improved convergence of the coupled-wave method for TM polarization. J Opt Soc Am A 13:779–789

    Article  Google Scholar 

  • Lim SH, Mar W, Matheu P, Derkacs D, Yu ET (2007) Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles. J Appl Phys 101:104309

    Article  Google Scholar 

  • Lükermanna B, Heinzmanna U, Stiebig U (2012) Plasmon induced NIR response of thin-film a-Si: H solar cells. Proc SPIE 8471:84710S-1

    Article  Google Scholar 

  • Mirin NA, Halas NJ (2009) Light-bending nanoparticles. Nano Lett 9:1255–1259

    Article  Google Scholar 

  • Moulin E, Sukmanowski J, Luo P, Carius R, Royer FX, Stiebig H (2008) Improved light absorption in thin-film silicon solar cells by integration of silver nanoparticles. J Non-Cryst Solids 354:2488–2491

    Article  Google Scholar 

  • Nasser H, Saleh ZM, Ozkol E, Günoven M, Bek A, Turan R (2013) fabrication of Ag nanoparticles embedded in Al:ZnO as potential light-trapping plasmonic interface for thin film solar cells. Plasmonics 8:1485–1492

    Article  Google Scholar 

  • Pillai S, Green MA (2010) Plasmonics for photovoltaic applications. Sol Energy Mater Sol Cells 94:1481–1486

    Article  Google Scholar 

  • Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105

    Article  Google Scholar 

  • Saleh ZM, Nasser H, Özkol E, Günöven M, Canli S, Bek A, Turan R (2013) Enhanced optical absorption and spectral photocurrent in a-Si: H by single- and double-layer silver plasmonic interfaces. Plasmonics 9:357–365

    Article  Google Scholar 

  • Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86:063106

    Article  Google Scholar 

  • Soderstromn K, Haug FJ, Escarre J, Pahud C, Biron R, Ballif C (2011) Highly reflective nanotextured sputtered silver back reflector for flexible high-efficiency n–i–p thin-film silicon solar cells. Sol Energy Mater Sol Cells 95:3585–3591

    Article  Google Scholar 

  • Stuart HR, Hall DG (1998) Island size effects in nanoparticles enhanced photodetectors. Appl Phys Lett 73:3815–3817

    Article  Google Scholar 

  • Temple TL, Mahanama GDK, Reehal HS, Bagnall DM (2009) Influence of localized surface Plasmon excitation in silver nanoparticles on the performance of silicon solar cells. Sol Energy Mater Sol Cells 93:1978–1985

    Article  Google Scholar 

  • Trupke T, Green MA, Wurfel P (2002) Improving solar cell efficiencies by up-conversion of sub-band-gap light. J Appl Phys 92:4117

    Article  Google Scholar 

  • Yu ET, Derkacs D, Lim SH, Matheu B, Schaadt M (2008) Plasmonic nanoparticle scattering for enhanced performance of photovoltaic and photodetector devices. Proc. SPIE 7033: V-9

Download references

Acknowledgments

R. T. acknowledges the support by the Scientific and Technological Research Council of Turkey (TUBITAK) under joint project with BMBF and Rainbow Energy, per the contract number 109R037. A. B. is grateful to The Scientific and Technological Research Council of Turkey (TUBITAK) for their support under Grant numbers 113F239, 113F375, and 113M931. Z.M. Saleh acknowledges the support from the Scientific and Technological Research Council of Turkey (TUBITAK) BIDEB-2221 program. H. Nasser acknowledges the support from the Scientific and Technological Research Council of Turkey (TUBITAK) BIDEB-2215 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. M. Saleh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 848 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, Z.M., Nasser, H., Özkol, E. et al. Optimized spacer layer thickness for plasmonic-induced enhancement of photocurrent in a-Si:H. J Nanopart Res 17, 419 (2015). https://doi.org/10.1007/s11051-015-3225-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3225-9

Keywords

Navigation