Optimized spacer layer thickness for plasmonic-induced enhancement of photocurrent in a-Si:H

  • Z. M. Saleh
  • H. Nasser
  • E. Özkol
  • M. Günöven
  • K. Abak
  • S. Canli
  • A. Bek
  • R. Turan
Research Paper


Plasmonic interfaces consisting of silver nanoparticles of different sizes (50–100 nm) have been processed by the self-assembled dewetting technique and integrated to hydrogenated amorphous silicon (a-Si:H) using SiNx spacer layers to investigate the dependence of optical trapping enhancement on spacer layer thickness through the enhancements in photocurrent. Samples illuminated from the a-Si:H side exhibit a localized surface plasmon resonance (LSPR) that is red-shifted with the increasing particle size and broadened into the red with the increasing spacer layer thickness. The photocurrent measured in a-Si:H is not only consistent with the red-shift and broadening of the LSPR, but exhibits critical dependence on the spacer layer thickness also. The samples with plasmonic interfaces and a SiNx spacer layer exhibit appreciable enhancement of photocurrent compared with flat a-Si:H reference depending on the size of the Ag nanoparticle. Simulations conducted on one-dimensional square structures exhibit electric fields that are localized near the plasmonic structures but extend appreciably into the higher refractive index a-Si:H. These simulations produce a clear red-shift and broadening of extinction spectra for all spacer layer thicknesses and predict an enhancement in photocurrent in agreement with experimental results. The spectral dependence of photocurrent for six plasmonic interfaces with different Ag nanoparticle sizes and spacer layer thicknesses are correlated with the optical spectra and compared with the simulations to predict an optimal spacer layer thickness.


Silver nanoparticles Dewetting Plasmonic resonance Light trapping Photocurrent Solar cells applications 



R. T. acknowledges the support by the Scientific and Technological Research Council of Turkey (TUBITAK) under joint project with BMBF and Rainbow Energy, per the contract number 109R037. A. B. is grateful to The Scientific and Technological Research Council of Turkey (TUBITAK) for their support under Grant numbers 113F239, 113F375, and 113M931. Z.M. Saleh acknowledges the support from the Scientific and Technological Research Council of Turkey (TUBITAK) BIDEB-2221 program. H. Nasser acknowledges the support from the Scientific and Technological Research Council of Turkey (TUBITAK) BIDEB-2215 program.

Supplementary material

11051_2015_3225_MOESM1_ESM.docx (849 kb)
Supplementary material 1 (DOCX 848 kb)


  1. Aberle AG (2001) Overview on SiN surface passivation of crystalline silicon solar cells. Sol Energy Mater Sol Cells 65:239–248CrossRefGoogle Scholar
  2. Atrel AC, García-Etxarri A, Alaeian H, Dionne JA (2012) Toward high-efficiency solar upconversion with plasmonic nanostructures. J Opt 14:024008CrossRefGoogle Scholar
  3. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213CrossRefGoogle Scholar
  4. Beltran-Huarac J, Wang J, Tanaka H, Jadwisienczak WM, Weiner BR, Morell G (2013) Stability of the Mn photoluminescence in bifunctional ZnS:0.05 Mn nanoparticles. J Appl Phys 114:053106CrossRefGoogle Scholar
  5. Catchpole KR, Polman A (2008a) Design principles for particle plasmon enhanced solar cells. Appl Phys Lett 93:191113CrossRefGoogle Scholar
  6. Catchpole KR, Polman A (2008b) Plasmonic solar cells. Opt Express 16:21799CrossRefGoogle Scholar
  7. Cho EC (2007) Silicon quantum dots in a dielectric matrix for all-Si tandem solar cells. Adv Optoelectron 2007:69578CrossRefGoogle Scholar
  8. Eminian C, Haug FJ, Cubero O, Niquille X, Ballif C (2011) Photocurrent enhancement in thin film amorphous silicon solar cells with silver nanoparticles. Progr Photovolt 19:260CrossRefGoogle Scholar
  9. Gangopadhyay U, Kim K, Mangalaraj D, Yi J (2004) Low cost CBD ZnS antireflection coating on large area commercial mono-crystalline silicon solar cells. Appl Surf Sci 230:364–370CrossRefGoogle Scholar
  10. Ghannam MY, Abouelsaood AA, Alomar AS, Poortmans J (2010) Analysis of thin-film silicon solar cells with plasma textured front surface and multi-layer porous silicon back reflector. Sol Energy Mater Sol Cells 94:850–856CrossRefGoogle Scholar
  11. Granet G, Guizal B (1996) Efficient implementation of the coupled wave method for metallic lamellar gratings in TM polarization. J Opt Soc Am A 13:1019–1023CrossRefGoogle Scholar
  12. Guler U, Turan R (2010) Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles. Opt Express 18:17322–17338CrossRefGoogle Scholar
  13. Ho C, Yeh D, Su V, Yang C, Yang P, Pu M, Kuan C, Cheng I, Lee S (2012) Plasmonic multilayer nanoparticles enhanced photocurrent in thin film hydrogenated amorphous silicon solar cells. J Appl Phys 112:023113CrossRefGoogle Scholar
  14. Johnson PB, Christy RW (1972) Optical Constants of the Noble Metals. Phys Rev B 6:4370CrossRefGoogle Scholar
  15. Lahoz F, Perez-Rodriguez C, Hernandez SE, Martin IR, Lavin V, Rodriguez-Mendoza UR (2011) Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells. Sol Energy Mater Sol Cells 95:1671–1677CrossRefGoogle Scholar
  16. Lalanne P, Jurek MP (1998) Computation of the near-field pattern with the coupled-wave method for TM polarization. J Mod Opt 45:1357–1374CrossRefGoogle Scholar
  17. Lalanne P, Morris GM (1996) Highly improved convergence of the coupled-wave method for TM polarization. J Opt Soc Am A 13:779–789CrossRefGoogle Scholar
  18. Lim SH, Mar W, Matheu P, Derkacs D, Yu ET (2007) Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles. J Appl Phys 101:104309CrossRefGoogle Scholar
  19. Lükermanna B, Heinzmanna U, Stiebig U (2012) Plasmon induced NIR response of thin-film a-Si: H solar cells. Proc SPIE 8471:84710S-1CrossRefGoogle Scholar
  20. Mirin NA, Halas NJ (2009) Light-bending nanoparticles. Nano Lett 9:1255–1259CrossRefGoogle Scholar
  21. Moulin E, Sukmanowski J, Luo P, Carius R, Royer FX, Stiebig H (2008) Improved light absorption in thin-film silicon solar cells by integration of silver nanoparticles. J Non-Cryst Solids 354:2488–2491CrossRefGoogle Scholar
  22. Nasser H, Saleh ZM, Ozkol E, Günoven M, Bek A, Turan R (2013) fabrication of Ag nanoparticles embedded in Al:ZnO as potential light-trapping plasmonic interface for thin film solar cells. Plasmonics 8:1485–1492CrossRefGoogle Scholar
  23. Pillai S, Green MA (2010) Plasmonics for photovoltaic applications. Sol Energy Mater Sol Cells 94:1481–1486CrossRefGoogle Scholar
  24. Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101:093105CrossRefGoogle Scholar
  25. Saleh ZM, Nasser H, Özkol E, Günöven M, Canli S, Bek A, Turan R (2013) Enhanced optical absorption and spectral photocurrent in a-Si: H by single- and double-layer silver plasmonic interfaces. Plasmonics 9:357–365CrossRefGoogle Scholar
  26. Schaadt DM, Feng B, Yu ET (2005) Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett 86:063106CrossRefGoogle Scholar
  27. Soderstromn K, Haug FJ, Escarre J, Pahud C, Biron R, Ballif C (2011) Highly reflective nanotextured sputtered silver back reflector for flexible high-efficiency n–i–p thin-film silicon solar cells. Sol Energy Mater Sol Cells 95:3585–3591CrossRefGoogle Scholar
  28. Stuart HR, Hall DG (1998) Island size effects in nanoparticles enhanced photodetectors. Appl Phys Lett 73:3815–3817CrossRefGoogle Scholar
  29. Temple TL, Mahanama GDK, Reehal HS, Bagnall DM (2009) Influence of localized surface Plasmon excitation in silver nanoparticles on the performance of silicon solar cells. Sol Energy Mater Sol Cells 93:1978–1985CrossRefGoogle Scholar
  30. Trupke T, Green MA, Wurfel P (2002) Improving solar cell efficiencies by up-conversion of sub-band-gap light. J Appl Phys 92:4117CrossRefGoogle Scholar
  31. Yu ET, Derkacs D, Lim SH, Matheu B, Schaadt M (2008) Plasmonic nanoparticle scattering for enhanced performance of photovoltaic and photodetector devices. Proc. SPIE 7033: V-9Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Center for Solar Energy Research and Applications (GÜNAM)Middle East Technical UniversityAnkaraTurkey
  2. 2.Department of PhysicsArab American University-JeninJeninPalestine
  3. 3.Department of PhysicsMiddle East Technical UniversityAnkaraTurkey
  4. 4.Micro and Nanotechnology Program of Graduate School of Natural and Applied SciencesMiddle East Technical UniversityAnkaraTurkey
  5. 5.Central LaboratoryMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations