A quantitative understanding on effects of finest nanograins on nanovoid growth in nanocrystalline materials

  • Tongyang He
  • Jianqiu Zhou
  • Hongxi Liu
Research Paper


For evaluating the effects of finest nanograins, whose grain size ranging from 2 to 4 nm, on nanovoid growth in nanocrystalline (NC) materials, we proposed a new theoretical model composed of finest nanograins evenly located at the triple junctions of conventional NC materials (grain size ranging from 10 to 100 nm). In the framework of the model, the mechanism of nanovoid growth is the dislocation emission. The blocking effect of finest nanograin on the motion of dislocations emitted from the nanovoid surface was taken into consideration. The critical condition required for dislocations emitted from the nanovoid surface and the influences of the finest nanograin on the nanovoid growth were calculated separately. The quantitatively analyzed results showed that finest nanograins could significantly suppress the growth of nanovoids compared with the triple junctions without finest nanograins. Therefore, the fracture toughness of the NC materials could be enhanced by finest nanograins.


Nanovoid growth Finest nanograin Dislocation Triple junction Theory Modeling and simulations 



This work was supported by Key Project of Chinese Ministry of Education (211061), National Natural Science Foundation of China (10502025, 10872087, 11272143), Program for Chinese New Century Excellent Talents in University (NCET-12-0712), and PhD Programs Foundation of Ministry of Education of China (20133221110008).

Compliance with ethical standards

Conflict of Interest

The authors declared that they have no conflicts of interest to this work.


  1. Asaro RJ, Krysl P, Kad B (2003) Deformation mechanism transitions in nanoscale FCC metals. Philos Mag Lett 83:733–743. doi: 10.1080/09500830310001614540 CrossRefGoogle Scholar
  2. Belova IV, Murch GE (2003) Diffusion in nanocrystalline materials. J Phys Chem Solids 64:873–878. doi: 10.1016/s0022-3697(02)00421-3 CrossRefGoogle Scholar
  3. Bhatia MA, Solanki KN, Moitra A, Tschopp MA (2012) Investigating damage evolution at the nanoscale: molecular dynamics simulations of nanovoid growth in single-crystal aluminum. Metall Mater Trans A 44:617–626. doi: 10.1007/s11661-012-1082-z CrossRefGoogle Scholar
  4. Chen G, Zhang K, Wang G, Han W (2004) The superplastic deep drawing of a fine-grained alumina–zirconia ceramic composite and its cavitation behavior. Ceram Int 30:2157–2162. doi: 10.1016/j.ceramint.2003.12.002 CrossRefGoogle Scholar
  5. Cuitiño AM, Ortiz M (1996) Ductile fracture by vacancy condensation in f.c.c. single crystals. Acta Mater 44:427–436. doi: 10.1016/1359-6454(95)00220-0 CrossRefGoogle Scholar
  6. Dao M, Lu L, Asaro R, Dehosson J, Ma E (2007) Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater 55:4041–4065. doi: 10.1016/j.actamat.2007.01.038 CrossRefGoogle Scholar
  7. Dorigato A, Pegoretti A (2010) The role of alumina nanoparticles in epoxy adhesives. J Nanopart Res 13:2429–2441. doi: 10.1007/s11051-010-0130-0 CrossRefGoogle Scholar
  8. Fang TH, Li WL, Tao NR, Lu K (2011) Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331:1587–1590. doi: 10.1126/science.1200177 CrossRefGoogle Scholar
  9. Fedorov AA, Gutkin MY, Ovid’ko IA (2003) Transformations of grain boundary dislocation pile-ups in nano- and polycrystalline materials. Acta Mater 51:887–898. doi: 10.1016/s1359-6454(02)00433-0 CrossRefGoogle Scholar
  10. Fischer FD, Antretter T (2009) Deformation, stress state and thermodynamic force for a growing void in an elastic–plastic material. Int J Plast 25:1819–1832. doi: 10.1016/j.ijplas.2008.11.007 CrossRefGoogle Scholar
  11. Fu S-Y, Mai Y-W, Du S-Y, Hui D (2012) Nanomechanics and nanocomposites: mechanical behaviors. Composites B 43:1–2. doi: 10.1016/j.compositesb.2011.04.021 CrossRefGoogle Scholar
  12. Gleiter H (2008) Our thoughts are ours, their ends none of our own: are there ways to synthesize materials beyond the limitations of today? Acta Mater 56:5875–5893. doi: 10.1016/j.actamat.2008.08.028 CrossRefGoogle Scholar
  13. Guo X, Yang G, Weng GJ, Zhu LL (2015) Numerical simulation of ballistic performance of bimodal nanostructured metals. Mater Sci Eng A 630:13–26. doi: 10.1016/j.msea.2015.01.081 CrossRefGoogle Scholar
  14. He Y, Xu Z, Yang Q, Wu F, Liang L (2015) Supramolecular modification of multi-walled carbon nanotubes with β-cyclodextrin for better dispersibility. J Nanopart Res. doi: 10.1007/s11051-015-2866-z Google Scholar
  15. Hu L, Zhou J (2011) Void evolution in nanocrystalline metal film under uniform tensile stress. Mater Sci Eng A 528:860–867. doi: 10.1016/j.msea.2010.10.032 CrossRefGoogle Scholar
  16. Hu L, Huo R, Zhou J, Wang Y, Zhang S (2012) The effects of the finest grains on the mechanical behaviours of nanocrystalline materials. J Nanopart Res. doi: 10.1007/s11051-011-0677-4 Google Scholar
  17. Huang M, Li Z, Wang C (2007) Discrete dislocation dynamics modelling of microvoid growth and its intrinsic mechanism in single crystals. Acta Mater 55:1387–1396. doi: 10.1016/j.actamat.2006.09.041 CrossRefGoogle Scholar
  18. Idrissi H, Wang B, Colla MS, Raskin JP, Schryvers D, Pardoen T (2011) Ultrahigh strain hardening in thin palladium films with nanoscale twins. Adv Mater 23:2119–2122. doi: 10.1002/adma.201004160 CrossRefGoogle Scholar
  19. Khan AS, Farrokh B, Takacs L (2008a) Compressive properties of Cu with different grain sizes: sub-micron to nanometer realm. J Mater Sci 43:3305–3313. doi: 10.1007/s10853-008-2508-2 CrossRefGoogle Scholar
  20. Khan AS, Farrokh B, Takacs L (2008b) Effect of grain refinement on mechanical properties of ball-milled bulk aluminum. Mater Sci Eng A 489:77–84. doi: 10.1016/j.msea.2008.01.045 CrossRefGoogle Scholar
  21. Kobler A et al (2015) Nanotwinned silver nanowires: structure and mechanical properties. Acta Mater 92:299–308. doi: 10.1016/j.actamat.2015.02.041 CrossRefGoogle Scholar
  22. Koch CC (2007) Structural nanocrystalline materials: an overview. J Mater Sci 42:1403–1414. doi: 10.1007/s10853-006-0609-3 CrossRefGoogle Scholar
  23. Kottada RS, Chokshi AH (2000) The high temperature tensile and compressive deformation characteristics of magnesia doped alumina. Acta Mater 48:3905–3915. doi: 10.1016/S1359-6454(00)00180-4 CrossRefGoogle Scholar
  24. Levitas VI, Attariani H (2012) Mechanochemical continuum modeling of nanovoid nucleation and growth in reacting nanoparticles. J Phys Chem C 116:54–62. doi: 10.1021/jp2055365 CrossRefGoogle Scholar
  25. Lin IH, Thomson R (1986) Cleavage, dislocation emission, and shielding for cracks under general loading. Acta Metall 34:187–206. doi: 10.1016/0001-6160(86)90191-4 CrossRefGoogle Scholar
  26. Liu H, Zhou J, Zhang S, Wang Y, Wang L, Dong S (2014) Modeling the strain-hardening effect and plastic deformation of nanocrystalline FCC metals dispersed with the finest grains. J Nanopart Res. doi: 10.1007/s11051-014-2449-4 Google Scholar
  27. Lubarda VA (2011) Emission of dislocations from nanovoids under combined loading. Int J Plast 27:181–200. doi: 10.1016/j.ijplas.2010.04.005 CrossRefGoogle Scholar
  28. Lubarda VA, Schneider MS, Kalantar DH, Remington BA, Meyers MA (2004) Void growth by dislocation emission. Acta Mater 52:1397–1408. doi: 10.1016/j.actamat.2003.11.022 CrossRefGoogle Scholar
  29. Marek I, Vojtěch D, Michalcová A, Kubatík TF (2015) High-strength bulk nano-crystalline silver prepared by selective leaching combined with spark plasma sintering. Mater Sci Eng A 627:326–332. doi: 10.1016/j.msea.2015.01.014 CrossRefGoogle Scholar
  30. Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11:139–147. doi: 10.1088/0957-4484/11/3/301 CrossRefGoogle Scholar
  31. Ovid’ko IA, Sheinerman AG (2009) Grain size effect on crack blunting in nanocrystalline materials. Scr Mater 60:627–630. doi: 10.1016/j.scriptamat.2008.12.028 CrossRefGoogle Scholar
  32. Prasad MJNV, Suwas S, Chokshi AH (2009) Microstructural evolution and mechanical characteristics in nanocrystalline nickel with a bimodal grain-size distribution. Mater Sci Eng A 503:86–91. doi: 10.1016/j.msea.2008.01.099 CrossRefGoogle Scholar
  33. Shenoy VB (2005) Atomistic calculations of elastic properties of metallic FCC crystal surfaces. Phys Rev B 71:094104CrossRefGoogle Scholar
  34. Sinha T, Kulkarni Y (2014) Alternating brittle and ductile response of coherent twin boundaries in nanotwinned metals. J Appl Phys 116:183505. doi: 10.1063/1.4901472 CrossRefGoogle Scholar
  35. Traiviratana S, Bringa EM, Benson DJ, Meyers MA (2008) Void growth in metals: atomistic calculations. Acta Mater 56:3874–3886. doi: 10.1016/j.actamat.2008.03.047 CrossRefGoogle Scholar
  36. Wang L, Zhou J, Liu Y, Zhang S, Wang Y, Xing W (2011) Nanovoid growth in nanocrystalline metal by dislocation shear loop emission. Mater Sci Eng A 528:5428–5434. doi: 10.1016/j.msea.2011.03.074 CrossRefGoogle Scholar
  37. Wang F, Dai Y, Zhao J, Li Q, Zhang B (2014) Effect of size on fracture and tensile manipulation of gold nanowires. J Nanopart Res. doi: 10.1007/s11051-014-2752-0 Google Scholar
  38. Wu Y et al (2014) The effects of intergranular sliding on the fracture toughness of nanocrystalline materials with finest grains. J Mater Res 29:1086–1094. doi: 10.1557/jmr.2014.89 CrossRefGoogle Scholar
  39. Youssef KM, Scattergood RO, Murty KL, Horton JA, Koch CC (2005) Ultrahigh strength and high ductility of bulk nanocrystalline copper. Appl Phys Lett 87:091904. doi: 10.1063/1.2034122 CrossRefGoogle Scholar
  40. Zhao Y, Fang Q, Liu Y (2015) Effect of nanograin boundary sliding on nanovoid growth by dislocation shear loop emission in nanocrystalline materials. Eur J Mech A 49:419–429. doi: 10.1016/j.euromechsol.2014.09.003 CrossRefGoogle Scholar
  41. Zhu B, Asaro RJ, Krysl P, Bailey R (2005) Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals. Acta Mater 53:4825–4838. doi: 10.1016/j.actamat.2005.06.033 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.School of Mechanical and Power EngineeringNanjing Tech UniversityNanjingPeople’s Republic of China

Personalised recommendations