The functionalization of limonite to prepare NZVI and its application in decomposition of p-nitrophenol

  • Haibo Liu
  • Tianhu Chen
  • Qiaoqin Xie
  • Xuehua Zou
  • Chen Chen
  • Ray L. Frost
Research Paper


Nano zero valent iron (NZVI) was prepared by reducing natural limonite using hydrogen. X-ray fluorescence, thermogravimetry, X-ray diffraction, transmission electron microscope, temperature programmed reduction (TPR), field emission scanning electron microscope/energy disperse spectroscopy (FESEM/EDS) were utilized to characterize the natural limonite and reduced limonite. The ratios of Fe:O before and after reducing was determined using EDS. The reactivity of the NZVI was assessed by decomposition of p-nitrophenol (p-NP) and was compared with commercial iron powder. In this study, the results of TPR and FESEM/EDS indicated that NZVI can be prepared by reducing natural limonite using hydrogen. Most importantly, this NZVI was proved to have a good performance on decomposition of p-NP and the process of p-NP decomposition agreed well with the pseudo-first-order kinetic model. The reactivity of this NZVI for decomposition of p-NP was greatly superior to that of commercial iron powder.


Limonite Functionalization Nano zero valent iron p-Nitrophenol removal 



This study was financially supported by the Natural Science Foundation of China (No. 41130206, 41402030, 41172048, 41572029). The authors appreciate the financial and infrastructure support of the School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, for this research.


  1. Ahn WY, Sheeley SA, Rajh T, Cropek DM (2007) Photocatalytic reduction of 4-nitrophenol with arginine-modified titanium dioxide nanoparticles. Appl Catal B 74:103–110CrossRefGoogle Scholar
  2. Ambashta RD, Repo E, Sillanpää M (2011) Degradation of tributyl phosphate using nanopowders of iron and iron–nickel under the Influence of a static magnetic field. Ind Eng Chem Res 50:11771–11777CrossRefGoogle Scholar
  3. Arancibia N, Baltazar SE, Garcia A, Romero AH, Rubio MA, Altbir D (2014) Lead removal by nano-scale zero valent iron: surface analysis and pH effect. Mater Res Bull 59:341–348CrossRefGoogle Scholar
  4. Atkinson RJ, Posner AM, Quirk JP (1967) Adsorption of potential-determining ions at the ferric oxide-aqueous electrolyte interface. J Phys Chem 71:550–558CrossRefGoogle Scholar
  5. Burris DR, Campbell TJ, Manoranjan VS (1995) Sorption of trichloroethylene and tetrachloroethylene in a batch reactive metallic iron-water system. Environ Sci Technol 29:2850–2855CrossRefGoogle Scholar
  6. Çelebi O, Üzüm Ç, Shahwan T, Erten HN (2007) A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron. J Hazard Mater 148:761–767CrossRefGoogle Scholar
  7. Chang YC, Chen DH (2009) Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst. J Hazard Mater 165:664–669CrossRefGoogle Scholar
  8. Cheng IF, Muftikian R, Fernando Q, Korte N (1997) Reduction of nitrate to ammonia by zero-valent iron. Chemosphere 35:2689–2695CrossRefGoogle Scholar
  9. Choe S, Chang YY, Hwang KY, Khim J (2000) Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere 41:1307–1311CrossRefGoogle Scholar
  10. Chuang FW, Larson RA, Wessman MS (1995) Zero-valent iron-promoted dechlorination of polychlorinated biphenyls. Environ Sci Technol 29:2460–2463CrossRefGoogle Scholar
  11. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses, 2nd edn. WILEY-VCH GmbH&Co. KGaA, WeinheimCrossRefGoogle Scholar
  12. Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211–212:112–125CrossRefGoogle Scholar
  13. Crane RA, Scott T (2014) The removal of uranium onto carbon-supported nanoscale zero-valent iron particles. J Nanopart Res 16:2813CrossRefGoogle Scholar
  14. Crane RA, Dickinson M, Popescu IC, Scott TB (2011) Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water. Water Res 45:2931–2942CrossRefGoogle Scholar
  15. Cundy AB, Hopkinson L, Whitby RLD (2008) Use of iron-based technologies in contaminated land and groundwater remediation: a review. Sci Total Environ 400:42–51CrossRefGoogle Scholar
  16. Di Palma L, Gueye MT, Petrucci E (2015) Hexavalent chromium reduction in contaminated soil: a comparison between ferrous sulphate and nanoscale zero-valent iron. J Hazard Mater 281:70–76CrossRefGoogle Scholar
  17. Dickinson M, Scott TB (2010) The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent. J Hazard Mater 178:171–179CrossRefGoogle Scholar
  18. Dickinson M, Scott T, Crane R, Riba O, Barnes R, Hughes G (2010) The effects of vacuum annealing on the structure and surface chemistry of iron:nickel alloy nanoparticles. J Nanopart Res 12:2081–2092CrossRefGoogle Scholar
  19. Elliott D, Lien H, Zhang W (2009) Degradation of lindane by zero-valent iron nanoparticles. J Environ Eng 135:317–324CrossRefGoogle Scholar
  20. Gao S, Jia X, Li Z, Chen Y (2012) Hierarchical plasmonic-metal/semiconductor micro/nanostructures: green synthesis and application in catalytic reduction of p-nitrophenol. J Nanopart Res 14Google Scholar
  21. Glavee GN, Klabunde KJ, Sorensen CM, Hadjipanayis GC (1995) Chemistry of borohydride reduction of iron(II) and iron(III) ions in aqueous and nonaqueous media. Formation of nanoscale Fe, FeB, and Fe2B powders. Inorg Chem 34:28–35CrossRefGoogle Scholar
  22. Gomes HI, Dias-Ferreira C, Ottosen LM, Ribeiro AB (2014) Electrodialytic remediation of polychlorinated biphenyls contaminated soil with iron nanoparticles and two different surfactants. J Colloid Interface Sci 433:189–195CrossRefGoogle Scholar
  23. Hayakawa K, Yoshimura T, Esumi K (2003) Preparation of gold–dendrimer nanocomposites by laser irradiation and their catalytic reduction of 4-Nitrophenol. Langmuir 19:5517–5521CrossRefGoogle Scholar
  24. Henderson AD, Demond AH (2007) Long-term performance of zero-valent iron permeable reactive barriers: a critical review. Environ Eng Sci 24:401–423CrossRefGoogle Scholar
  25. Hoag GE, Collins JB, Holcomb JL, Hoag JR, Nadagouda MN, Varma RS (2009) Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 19:8671CrossRefGoogle Scholar
  26. Hoch LB, Mack EJ, Hydutsky BW, Hershman JM, Skluzacek JM, Mallouk TE (2008) Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Environ Sci Technol 42:2600–2605CrossRefGoogle Scholar
  27. Huang CP, Wang HW, Chiu PC (1998) Nitrate reduction by metallic iron. Water Res 32:2257–2264CrossRefGoogle Scholar
  28. Joo SH, Zhao D (2008) Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: effects of catalyst and stabilizer. Chemosphere 70:418–425CrossRefGoogle Scholar
  29. Joo SH, Feitz AJ, Sedlak DL, Waite TD (2004) Quantification of the oxidizing capacity of nanoparticulate zero-valent iron. Environ Sci Technol 39:1263–1268CrossRefGoogle Scholar
  30. Ju YM, Liu XW, Li ZY, Kang J, Wang XY, Zhang YK, Fang JD, Dionysiou DD (2015) Environmental application of millimetre-scale sponge iron (s-Fe-0) particles (I): pretreatment of cationic triphenylmethane dyes. J Hazard Mater 283:469–479CrossRefGoogle Scholar
  31. Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298CrossRefGoogle Scholar
  32. Kanel SR, Grenèche J-M, Choi H (2006) Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050CrossRefGoogle Scholar
  33. Karabelli D, Üzüm CAR, Shahwan T, Eroğlu AE, Scott TB, Hallam KR, Lieberwirth I (2008) Batch removal of aqueous Cu2+ ions using nanoparticles of zero-valent iron: a study of the capacity and mechanism of uptake. Ind Eng Chem Res 47:4758–4764CrossRefGoogle Scholar
  34. Klimkova S, Cernik M, Lacinova L, Filip J, Jancik D, Zboril R (2011) Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching. Chemosphere 82:1178–1184CrossRefGoogle Scholar
  35. Lai B, Chen Z, Zhou Y, Yang P, Wang J, Chen Z (2013) Removal of high concentration p-nitrophenol in aqueous solution by zero valent iron with ultrasonic irradiation (US–ZVI). J Hazard Mater 250–251:220–228CrossRefGoogle Scholar
  36. Lai B, Zhang Y, Chen Z, Yang P, Zhou Y, Wang J (2014) Removal of p-nitrophenol (PNP) in aqueous solution by the micron-scale iron–copper (Fe/Cu) bimetallic particles. Appl Catal B 144:816–830CrossRefGoogle Scholar
  37. Li L, Stanforth R (2000) Distinguishing adsorption and surface precipitation of phosphate on goethite (α-FeOOH). J Colloid Interface Sci 230:12–21CrossRefGoogle Scholar
  38. Li XQ, Zhang WX (2007) Sequestration of metal cations with zerovalent iron nanoparticles: a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J Phys Chem C 111:6939–6946CrossRefGoogle Scholar
  39. Li BZ, Zhu J (2014) Removal of p-chloronitrobenzene from groundwater: effectiveness and degradation mechanism of a heterogeneous nanoparticulate zero-valent iron (NZVI)-induced Fenton process. Chem Eng J 255:225–232CrossRefGoogle Scholar
  40. Li A, Tai C, Zhao Z, Wang Y, Zhang Q, Jiang G, Hu J (2007) Debromination of decabrominated diphenyl ether by resin-bound iron nanoparticles. Environ Sci Technol 41:6841–6846CrossRefGoogle Scholar
  41. Li J, Zhang X, Chen T, Liu H, Shi P (2010) Characterization and ammonia adsorption-desorption of palygorskite-supported manganese oxide as a low-temperature selective catalytic reduction catalyst. Chin J Catal 31(4):454–460CrossRefGoogle Scholar
  42. Li X, Zhang M, Liu Y, Li X, Liu Y, Hua R, He C (2013) Removal of U(VI) in aqueous solution by nanoscale zero-valent iron(nZVI). Water Qual Expo Health 5:31–40CrossRefGoogle Scholar
  43. Li SL, Wang W, Liu YY, Zhang WX (2014) Zero-valent iron nanoparticles (nZVI) for the treatment of smelting wastewater: a pilot-scale demonstration. Chem Eng J 254:115–123CrossRefGoogle Scholar
  44. Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39:1338–1345CrossRefGoogle Scholar
  45. Liu T, Tsang DCW, Lo IMC (2008) Chromium(VI) reduction kinetics by zero-valent iron in moderately hard water with humic acid: iron dissolution and humic acid adsorption. Environ Sci Technol 42:2092–2098CrossRefGoogle Scholar
  46. Liu H, Chen T, Chang D, Chen D, Frost RL (2012a) Catalytic cracking of tars derived from rice hull gasification over goethite and palygorskite. Appl Clay Sci 70:51–57CrossRefGoogle Scholar
  47. Liu H, Chen T, Frost RL, Chang D, Qing C, Xie Q (2012b) Effect of aging time and Al substitution on the morphology of aluminous goethite. J Colloid Interface Sci 385:81–86CrossRefGoogle Scholar
  48. Liu H, Chen T, Xie Q, Zou X, Qing C, Frost RL (2012c) Kinetic study of goethite dehydration and the effect of aluminium substitution on the dehydrate. Thermochim Acta 545:20–25CrossRefGoogle Scholar
  49. Liu HB, Chen TH, Chang DY, Chen D, Liu Y, He HP, Yuan P, Frost R (2012d) Nitrate reduction over nanoscale zero-valent iron prepared by hydrogen reduction of goethite. Mater Chem Phys 133:205–211CrossRefGoogle Scholar
  50. Liu H, Chen T, Chang J, Zou X, Frost RL (2013) The effect of hydroxyl groups and surface area of hematite derived from annealing goethite for phosphate removal. J Colloid Interface Sci 398:88–94CrossRefGoogle Scholar
  51. Lu Y, Mei Y, Schrinner M, Ballauff M, Möller MW, Breu J (2007) In situ formation of Ag nanoparticles in spherical polyacrylic acid brushes by UV irradiation. J Phys Chem C 111:7676–7681CrossRefGoogle Scholar
  52. Mantha R, Taylor KE, Biswas N, Bewtra JK (2001) A continuous system for Fe0 reduction of nitrobenzene in synthetic wastewater. Environ Sci Technol 35:3231–3236CrossRefGoogle Scholar
  53. Matheson LJ, Tratnyek PG (1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol 28:2045–2053CrossRefGoogle Scholar
  54. Naja G, Halasz A, Thiboutot S, Ampleman G, Hawari J (2008) Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using zerovalent iron nanoparticles. Environ Sci Technol 42:4364–4370CrossRefGoogle Scholar
  55. Nemanashi M, Meijboom R (2013) Synthesis and characterization of Cu, Ag and Au dendrimer-encapsulated nanoparticles and their application in the reduction of 4-nitrophenol to 4-aminophenol. J Colloid Interface Sci 389:260–267CrossRefGoogle Scholar
  56. Noubactep C (2008) A critical review on the process of contaminat removal in Fe0-H2O systems. Environ Technol 29:909–920CrossRefGoogle Scholar
  57. Olegario J, Yee N, Miller M, Sczepaniak J, Manning B (2010) Reduction of Se(VI) to Se(-II) by zerovalent iron nanoparticle suspensions. J Nanopart Res 12:2057–2068CrossRefGoogle Scholar
  58. Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent Iron. Environ Sci Technol 34:2564–2569CrossRefGoogle Scholar
  59. Ponder SM, Darab JG, Bucher J, Caulder D, Craig I, Davis L, Edelstein N, Lukens W, Nitsche H, Rao L, Shuh DK, Mallouk TE (2001) Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chem Mater 13:479–486CrossRefGoogle Scholar
  60. Reynolds GW, Hoff JT, Gillham RW (1990) Sampling bias caused by materials used to monitor halocarbons in groundwater. Environ Sci Technol 24:135–142CrossRefGoogle Scholar
  61. Riba O, Scott TB, Vala Ragnarsdottir K, Allen GC (2008) Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles. Geochim Cosmochim Acta 72:4047–4057CrossRefGoogle Scholar
  62. Scott TB, Dickinson M, Crane RA, Riba O, Hughes GM, Allen GC (2009) The effects of vacuum annealing on the structure and surface chemistry of iron nanoparticles. J Nanopart Res 12:1765–1775CrossRefGoogle Scholar
  63. Scott TB, Popescu IC, Crane RA, Noubactep C (2011) Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants. J Hazard Mater 186:280–287CrossRefGoogle Scholar
  64. Shen CY, Lu WL, Huang YF, Wu JX, Zhang HY (2015) Removal of bismerthiazol from water using zerovalent iron: batch studies and mechanism interpretation. Chem Eng J 260:411–418CrossRefGoogle Scholar
  65. Shih YH, Tai YT (2010) Reaction of decabrominated diphenyl ether by zerovalent iron nanoparticles. Chemosphere 78:1200–1206CrossRefGoogle Scholar
  66. Shivhare A, Ambrose SJ, Zhang H, Purves RW, Scott RWJ (2013) Stable and recyclable Au25 clusters for the reduction of 4-nitrophenol. Chem Commun 49:276–278CrossRefGoogle Scholar
  67. Su C, Puls RW (2004) Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate. Environ Sci Technol 38:2715–2720CrossRefGoogle Scholar
  68. Su YM, Adeleye AS, Huang YX, Sun XY, Dai CM, Zhou XF, Zhang YL, Keller AA (2014a) Simultaneous removal of cadmium and nitrate in aqueous media by nanoscale zerovalent iron (nZVI) and Au doped nZVI particles. Water Res 63:102–111CrossRefGoogle Scholar
  69. Su YM, Adeleye AS, Zhou XF, Dai CM, Zhang WX, Keller AA, Zhang YL (2014b) Effects of nitrate on the treatment of lead contaminated groundwater by nanoscale zerovalent iron. J Hazard Mater 280:504–513CrossRefGoogle Scholar
  70. Sun YB, Ding CC, Cheng WC, Wang XK (2014) Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron. J Hazard Mater 280:399–408CrossRefGoogle Scholar
  71. Szytuła A, Burewicz A, Dimitrijević Ž, Kraśnicki S, Rżany H, Todorović J, Wanic A, Wolski W (1968) Neutron diffraction studies of α-FeOOH. Phys Status Solidi (B) 26:429–434CrossRefGoogle Scholar
  72. Taylor RM, Schwertmann U (1978) The influence of aluminum on iron oxides; Part 1, The influence of Al on Fe oxide formation from the Fe(II) system. Clays Clay Miner 26:373–383CrossRefGoogle Scholar
  73. Üzüm Ç, Shahwan T, Eroğlu AE, Lieberwirth I, Scott TB, Hallam KR (2008) Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions. Chem Eng J 144:213–220CrossRefGoogle Scholar
  74. Varade D, Haraguchi K (2013) Synthesis of highly active and thermally stable nanostructured Pt/clay materials by clay-mediated in situ reduction. Langmuir 29:1977–1984CrossRefGoogle Scholar
  75. Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156CrossRefGoogle Scholar
  76. Wang J, Liu GJ, Zhou CC, Li TF, Liu JJ (2014) Synthesis, characterization and aging study of kaolinite-supported zero-valent iron nanoparticles and its application for Ni(II) adsorption. Mater Res Bull 60:421–432CrossRefGoogle Scholar
  77. Wang T, Qu G, Sun Q, Liang D, Hu S (2015) Evaluation of the potential of p-nitrophenol degradation in dredged sediment by pulsed discharge plasma. Water Res 84:18–24CrossRefGoogle Scholar
  78. Xia SQ, Gu ZL, Zhang ZQ, Zhang J, Hermanowicz SW (2014) Removal of chloramphenicol from aqueous solution by nanoscale zero-valent iron particles. Chem Eng J 257:98–104CrossRefGoogle Scholar
  79. Xiao H, Xia Y, Cai C (2013) Conducting polymer hydrogel reactor for synthesizing Au nanoparticles and its use in the reduction of p-nitrophenol. J Nanopart Res 15:1Google Scholar
  80. Xu Y, Zhao D (2007) Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles. Water Res 41:2101–2108CrossRefGoogle Scholar
  81. Yan W, Vasic R, Frenkel AI, Koel BE (2012) Intraparticle reduction of arsenite (As(III)) by nanoscale zerovalent iron (nZVI) investigated with in situ x-ray absorption spectroscopy. Environ Sci Technol 46:7018–7026CrossRefGoogle Scholar
  82. Yang W, Yu Z, Pan B, Lv L, Zhang W (2015) Simultaneous organic/inorganic removal from water using a new nanocomposite adsorbent: a case study of p-nitrophenol and phosphate. Chem Eng J 268:399–407CrossRefGoogle Scholar
  83. Zha SX, Cheng Y, Gao Y, Chen ZL, Megharaj M, Naidu R (2014) Nanoscale zero-valent iron as a catalyst for heterogeneous Fenton oxidation of amoxicillin. Chem Eng J 255:141–148CrossRefGoogle Scholar
  84. Zhang X, Lin YM, Chen ZL (2009) 2,4,6-Trinitrotoluene reduction kinetics in aqueous solution using nanoscale zero-valent iron. J Hazard Mater 165:923–927CrossRefGoogle Scholar
  85. Zhang J, Han D, Zhang H, Chaker M, Zhao Y, Ma D (2012) In situ recyclable gold nanoparticles using CO2 switchable polymers for catalytic reduction of 4-nitrophenol. Chem Commun 48:11510–11512CrossRefGoogle Scholar
  86. Zhang YY, Jiang H, Zhang Y, Xie JF (2013) The dispersity-dependent interaction between montmorillonite supported nZVI and Cr(VI) in aqueous solution. Chem Eng J 229:412–419CrossRefGoogle Scholar
  87. Zhu H, Jia Y, Wu X, Wang H (2009) Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J Hazard Mater 172:1591–1596CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Haibo Liu
    • 1
  • Tianhu Chen
    • 1
  • Qiaoqin Xie
    • 1
  • Xuehua Zou
    • 1
  • Chen Chen
    • 1
  • Ray L. Frost
    • 2
  1. 1.Laboratory of Nanomineral and Environmental Material, School of Resources and Environmental EngineeringHefei University of TechnologyHefeiChina
  2. 2.Science and Engineering Faculty, School of Chemistry, Physics and Mechanical EngineeringQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations