Skip to main content
Log in

A predictive model of iron oxide nanoparticles flocculation tuning Z-potential in aqueous environment for biological application

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Iron oxide nanoparticles are the most used magnetic nanoparticles in biomedical and biotechnological field because of their nontoxicity respect to the other metals. The investigation of iron oxide nanoparticles behaviour in aqueous environment is important for the biological applications in terms of polydispersity, mobility, cellular uptake and response to the external magnetic field. Iron oxide nanoparticles tend to agglomerate in aqueous solutions; thus, the stabilisation and aggregation could be modified tuning the colloids physical proprieties. Surfactants or polymers are often used to avoid agglomeration and increase nanoparticles stability. We have modelled and synthesised iron oxide nanoparticles through a co-precipitation method, in order to study the influence of surfactants and coatings on the aggregation state. Thus, we compared experimental results to simulation model data. The change of Z-potential and the clusters size were determined by Dynamic Light Scattering. We developed a suitable numerical model to predict the flocculation. The effects of Volume Mean Diameter and fractal dimension were explored in the model. We obtained the trend of these parameters tuning the Z-potential. These curves matched with the experimental results and confirmed the goodness of the model. Subsequently, we exploited the model to study the influence of nanoparticles aggregation and stability by Z-potential and external magnetic field. The highest Z-potential is reached up with a small external magnetic influence, a small aggregation and then a high suspension stability. Thus, we obtained a predictive model of Iron oxide nanoparticles flocculation that will be exploited for the nanoparticles engineering and experimental setup of bioassays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Baalousha M (2008) Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter. Environ Toxicol Chem 27(9):1875–1882

    Article  Google Scholar 

  • Baalousha M (2009) Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter. Sci Total Environ 407(6):2093–2101. doi:10.1016/j.scitotenv.2008.11.022

    Article  Google Scholar 

  • Baldassarre F, Vergaro V, Scarlino F, Santis FD, Lucarelli G, della Torre A, Ciccarella G, Rinaldi R, Giannelli G, Leporatti S (2012) Polyelectrolyte capsules as carriers for growth factor inhibitor delivery to hepatocellular carcinoma. Macromol Biosci 12(5):656–665

    Article  Google Scholar 

  • Barratt G (2003) Colloidal drug carriers: achievements and perspectives. Cell Mol Life Sci 60:21–37

    Article  Google Scholar 

  • Bautista M, Bomati-Miguel O, Zhao X, Morales M, Gonzàlez-Carreño T, Alejo R, Ruiz-Cabello JD, Veintemillas-Verdaguer S (2004) Comparative study of ferrofluids based on dextran-coated iron oxide and metal nanoparticles for contrast agents in magnetic resonance imaging. Nanotechnology 15:S154S159

    Article  Google Scholar 

  • Bell G, Levine S, McCartney L (1970) Approximate methods of determining the double-layer free energy of interaction between two charged colloidal spheres. J Colloid Interf Sci 33:335–359

    Article  Google Scholar 

  • Berry C, Curtis A (2003) Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):R198–R206

    Article  Google Scholar 

  • Berry C, Wells S, Charles S, Aitchison G, Curtis A (2004) Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials 25:54055413

    Google Scholar 

  • Bulte JWM, Kraitchman D (2004) Iron oxide mr contrast agents for molecular and cellular imaging. NMR Biomed 17(7):484–499. doi:10.1002/nbm.924

    Article  Google Scholar 

  • Butterworth M, Bell S, Armes S, Simpson A (1996) Synthesis and characterization of polypyrrole–magnetite–silica particles. J Colloid Interf Sci 183(1):91–99. doi:10.1006/jcis.1996.0521

    Article  Google Scholar 

  • Chan D, Henderson D, Barojas J, Homola A (1985) The stability of a colloidal suspension of coated magnetic particles in an aqueous solution. IBM J Res Dev 29(1):1117

    Article  Google Scholar 

  • Chin CJ, Yiacoumi S, Tsouris C (1998) Shear-induced occulation of colloidal particles in stirred tanks. J Colloid Interf Sci 206(2):532–545

    Article  Google Scholar 

  • Cho E, Zhang Q, Xia Y (2011) The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol 6:385–391

    Article  Google Scholar 

  • Chung H, Hogg R (1985) Stability criteria for fine-particle dispersions. Coll Surf 15:119–135. doi:10.1016/0166-6622(85)80060-3

    Article  Google Scholar 

  • Cornell R, Schertmann U (1996) The iron oxides: structure, properties, reactions, occurrence and uses. Mineral Mag 61(408):740–741

    Google Scholar 

  • Dickson D, L G et al (2012) Dispersion and stability of bare hematite nanoparticles: effect of dispersion tools, nanoparticle concentration, humic acid and ionic strength. Sci Total Environ 419:170–177

    Article  Google Scholar 

  • Faure B, Salazar-Alvarez G, Bergström L (2011) Hamaker constants of iron oxide nanoparticles. Langmuir 27(14):8659–8664

    Article  Google Scholar 

  • Fried T, Shemer G, Markovich G (2001) Ordered two-dimensional arrays of ferrite nanoparticles. Adv Mater 13:1158

    Article  Google Scholar 

  • Frienlander S, Pui D (2004) Emerging issues in nanoparticle aerosol science and technology. J Nanopart Res 6(2):313–320. doi:10.1023/B:NANO.0000034725.89027.6b

  • Gao J, Li L, Ho P, Mak G, Gu H, Xu B (2006) Combining fluorescent probes and biofunctional magnetic nanoparticles for rapid detection of bacteria in human blood. Adv Mater 18:3145–3148

    Article  Google Scholar 

  • Gu H, Ho P, Tsang K, Wang L, Xu B (2003) Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration. J Am Chem Soc 125(51):15,702–15,703

    Article  Google Scholar 

  • Gu H, Xu K, Xu C, Xu B (2006) Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun 9:941–949. doi:10.1039/B514130C

    Article  Google Scholar 

  • Gupta A, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021. doi:10.1016/j.biomaterials.2004.10.012

    Article  Google Scholar 

  • Harris LA, Goff JD, Carmichael AY, Riffle JS, Harburn JJ, Pierre TGS, Saunders M (2003) Magnetite nanoparticle dispersions stabilized with triblock copolymers. Chem Mater 15(6):1367–1377. doi:10.1021/cm020994n

    Article  Google Scholar 

  • Hidber P, Graule T, Gauckler L (1996) Citric acid—a dispersant for aqueous alumina suspensions. J Am Ceram Soc 79(7):1857–1867. doi:10.1111/j.1151-2916.1996.tb08006.x

    Article  Google Scholar 

  • Honary S, Zahir F (2013) Effect of zeta potential on the properties of nano-drug delivery systems: a review (part 1). Trop J Pharm Res 12(2):255–264

    Google Scholar 

  • Hu JD, Zevi Y, Kou XM, Xiao J, Wang XJ, Jin Y (2010) Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions. Sci Total Environ 408(16):3477–3489. doi:10.1016/j.scitotenv.2010.03.033

    Article  Google Scholar 

  • Huber D (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501. doi:10.1002/smll.200500006

    Article  Google Scholar 

  • Ito A, Tanaka K, Honda H, Abe S, Yamaguchi H, Kobayashi T (2003) Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles. J Biosci Bioeng 96(4):364–369. doi:10.1016/S1389-1723(03)90138-1

    Article  Google Scholar 

  • Ito A, Hayashida M, Honda H, Hata K, Kagami H, Ueda M, Kobayashi T (2004a) Construction and harvest of multilayered keratinocyte sheets using magnetite nanoparticles and magnetic force. Tissue Eng 10:873–880

    Article  Google Scholar 

  • Ito A, Takizawa Y, Honda H, Kagami HHH, Ueda M, Kobayashi T (2004b) Tissue engineering using magnetite nanoparticles and magnetic force: heterotypic layers of cocultured hepatocytes and endothelial cells. Tissue Eng 10:833840

    Google Scholar 

  • Ito A, Hibino E, Kobayashi C, Terasaki H, Kagami H, Ueda M, Kobayashi T, Honda H (2005) Construction and delivery of tissue-engineering human retinal pigment epithelial cell sheets using magnetite nanoparticles and magnetic force. Tissue Eng 11:489–496

    Article  Google Scholar 

  • Ito A, Honda H, Kobayashi T (2006) Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of heat-controlled necrosis with heat shock protein expression. Cancer Immunol Immunother 55(3):320–328. doi:10.1007/s00262-005-0049-y

    Article  Google Scholar 

  • Jacobson M (2005) Fundamentals of atmospheric modeling, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jiang Q, Logan B (1991) Fractal dimensions of aggregates determined from steady-state size distributions. Environ Sci Technol 25(12):2031–2038. doi:10.1021/es00024a007

    Article  Google Scholar 

  • Kato H, Suzuki M, Fujita K, Horie M, Endoh S, Yoshida Y, Iwahashi H, Takahashi K, Nakamura A, Kinugasa S (2009) Reliable size determination of nanoparticles using dynamic light scattering method for in vitro toxicology assessment. Toxicol In Vitro 23(5):927–934. doi:10.1016/j.tiv.2009.04.006

    Article  Google Scholar 

  • Kell A, Stewart G, Ryan S, Peytavi R, Boissinot M, Huletsky A, Bergeron M, Simard B (2008) Vancomycin-modified nanoparticles for efficient targeting and preconcentration of gram-positive and gram-negative bacteria. ACS Nano 2(9):1777–1788. doi:10.1021/nn700183g

    Article  Google Scholar 

  • Kendall K, Kendall M, Rehfeldt F (2011a) Adhesion of nanoparticles. Adhesion of cells. Viruses and nanoparticles. Springer, Netherlands

    Book  Google Scholar 

  • Kendall K, Kendall M, Rehfeldt F (2011b) Modelling nanoparticle, virus and cell adhesion. Adhesion of cells. Viruses and nanoparticles. Springer, Netherlands

    Book  Google Scholar 

  • Kusters K (1991) The influence of turbulence on aggregation of small particles in agitated vessels. PhD thesis, Eindhoven University of Technology, The Netherlands

  • Larsen B, Haag M, Serkova N, Shroyer K, Stoldt C (2008) Controlled aggregation of superparamagnetic iron oxide nanoparticles for the development of molecular magnetic resonance imaging probes. Nanotechnology 19(26):265102, http://stacks.iop.org/0957-4484/19/i=26/a=265102

  • Laurent S, Dutz S, Häfeli U, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interf Sci 166(1–2):8–23. doi:10.1016/j.cis.2011.04.003

    Google Scholar 

  • Leeuwenburgh S, Ana I, Jansen J (2010) Sodium citrate as an effective dispersant for the synthesis of inorganic–organic composites with a nanodispersed mineral phase. Acta Biomater 6(3):836–844. doi:10.1016/j.actbio.2009.09.005

    Article  Google Scholar 

  • Leroux J (2007) Injectable nanocarriers for biodetoxification. Nat Nanotechnol 2:679–684

    Article  Google Scholar 

  • Li Z, Wei L, Gao M, Lei H (2005) One-pot reaction to synthesize biocompatible magnetite nanoparticles. Adv Mater 17(8):1001–1005. doi:10.1002/adma.200401545

    Article  Google Scholar 

  • Lübbe A, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, Matthias M, Dörken B, Herrmann F, Gürtler R, Hohenberger P, Haas N, Sohr R, Sander B, Lemke AJ, Ohlendorf D, Huhnt W, Huhn D (1996) Clinical experiences with magnetic drug targeting: a phase i study with 4-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 56(20):4686–4693, http://cancerres.aacrjournals.org/content/56/20/4686.abstract

  • Mancarella S, Greco V, Baldassarre F, Vergara D, Maffia M, Leporatti S (2015) Polymer-coated magnetic nanoparticles for curcumin delivery to cancer cells. Macromol Biosci. doi:10.1002/mabi.201500142

  • Mendelev V, Ivanov A (2005) Magnetic properties of ferrofluids: an influence of chain aggregates. J Magn Magn Mater 289:211–214. doi:10.1016/j.jmmm.2004.11.061

    Article  Google Scholar 

  • Mikhaylova M, Kim D, Bobrysheva N, Osmolowsky M, Semenov V, Tsakalakos T, Muhammed M (2004) Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir 20(6):2472–2477. doi:10.1021/la035648e

    Article  Google Scholar 

  • Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14:2161–2175. doi:10.1039/B402025A

    Article  Google Scholar 

  • Neuberger T, Schöpf B, Hofmann H, Hofmann M, von Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293(1):483–496. doi:10.1016/j.jmmm.2005.01.064 (proceedings of the Fifth International Conference on Scientific and Clinical Apllications of Magnetic Carriers)

    Article  Google Scholar 

  • Nobuto H, Sugita T, Kubo T, Shimose S, Yasunaga Y, Murakami T, Ochi M (2004) Evaluation of systemic chemotherapy with magnetic liposomal doxorubicin and a dipole external electromagnet. Int J Cancer 109(4):627–635. doi:10.1002/ijc.20035

    Article  Google Scholar 

  • Papaefthymiou G (2009) Nanoparticle magnetism. Nano Today 4(5):438–447, doi:10.1016/j.nantod.2009.08.006, http://www.sciencedirect.com/science/article/pii/S1748013209000929

  • Ponder S, Darab J, Mallouk T (2000) Remediation of cr(vi) and pb(ii) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34(12):2564–2569. doi:10.1021/es9911420

    Article  Google Scholar 

  • Roca A, Veintemillas-Verdaguer S, Port M, Robic C, Serna C, Morales M (2009) Effect of nanoparticle and aggregate size on the relaxometric properties of mr contrast agents based on high quality magnetite nanoparticles. J Phys Chem B 113(19):7033–7039. doi:10.1021/jp807820s

    Article  Google Scholar 

  • Rolliè S, Briesen J, Sundmacher K (2009) Discrete bivariate population balance modelling of heteroaggregation processes. J Colloid Interf Sci 336(2):551–564. doi:10.1016/j.jcis.2009.04.031

    Article  Google Scholar 

  • Ruysschaert T, Paquereau L, Winterhalter M, Fournier D (2006) Stabilization of liposomes through enzymatic polymerization of dna. Nano Lett 6(12):2755–2757. doi:10.1021/nl061724x

    Article  Google Scholar 

  • Safarik I, Safarikova M (2004) Magnetic techniques for the isolation and purification of proteins and peptides. Biomagn Res Technol 2:7

    Article  Google Scholar 

  • Saffman P, Turner J (1956) On the collision of drops in turbulent clouds. J Fluid Mech 1:16–30. doi:10.1017/S0022112056000020

    Article  Google Scholar 

  • Saiyed Z, Telang S, Ramchand C (2003) Application of magnetic techniques in the field of drug discovery and biomedicine. Biomagn Res Technol 1:2

    Article  Google Scholar 

  • Saleh N, Phenrat T, Sirk K, Dufour B, Ok J, Sarbu T, Matyjaszewski K, Tilton R, Lowry G (2005) Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Lett 5(12):2489–2494. doi:10.1021/nl0518268

    Article  Google Scholar 

  • Sayes C, Reed K, Warheit DB (2007) Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97(1):163–180, doi:10.1093/toxsci/kfm018, http://toxsci.oxfordjournals.org/content/97/1/163.abstract, http://toxsci.oxfordjournals.org/content/97/1/163.full.pdf+html

  • Selomulya C, Bushell G, Amal R, Waite T (2003) Understanding the role of restructuring in flocculation: the application of a population balance model. Chem Eng Sci 58(2):327–338, doi:10.1016/S0009-2509(02)00523-7, http://www.sciencedirect.com/science/article/pii/S0009250902005237

  • Shafi K, Ulman A, Yan X, N-LYang, Estournés C, White H, Rafailovich M (2001) Sonochemical synthesis of functionalized amorphous iron oxide nanoparticles. Langmuir 17(16):5093–5097. doi:10.1021/la010421+

    Article  Google Scholar 

  • Shen L, Laibinis P, Hatton T (1999) Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interfaces. Langmuir 15:447–453

    Article  Google Scholar 

  • Shinkai M, Le B, Honda H, Yoshikawa K, Shimizu K, Saga S, Wakabayashi T, Yoshida J, Kobayashi T (2001) Targeting hyperthermia for renal cell carcinoma using human mn antigen-specific magnetoliposomes. Jpn J Cancer Res 92:1138–1145

    Article  Google Scholar 

  • Smoluchowski M (1916) Drei vortrge ber diffusion, brownsche molekularbewegung und koagulation von kolloidteilchen. JPhys Zeit 17:557571

    Google Scholar 

  • Sousa M, Tourinho F, Depeyrot J, da Silva G, Lara M (2001) New electric double-layered magnetic fluids based on copper, nickel, and zinc ferrite nanostructures. J Phys Chem B 105(6):1168–1175. doi:10.1021/jp0039161

    Article  Google Scholar 

  • Spielman L (1970) Viscous interactions is brownian coagulation. J Colloid Interf Sci 33(4):562–570

    Article  Google Scholar 

  • Sun YP, q Li X, Cao J, x Zhang W, Wang H (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interf Sci 120(1–3):47 56. doi:10.1016/j.cis.2006.03.001

    Google Scholar 

  • Suzuki M, Shinkai M, Honda H, Kobayashi T (2003) Anticancer effect and immune induction by hyperthermia of malignant melanoma using magnetite cationic liposomes. Melanoma Res 13:129–135

    Article  Google Scholar 

  • Taboada-Serrano P, Chin CJ, Yiacoumi S, Tsouris C (2005) Modeling aggregation of colloidal particles. Curr Opin Colloid Interf Sci 10(3–4):123–132

    Article  Google Scholar 

  • Tanimoto A, Oshio K, Suematsu M, Pouliquen D, Stark D (2001) Relaxation effects of clustered particles. J Magn Reson Imaging 14(1):72–77. doi:10.1002/jmri.1153

    Article  Google Scholar 

  • Tartaj P, del Puerto Morales M, Veintemillas-Verdaguer S, Gonzàlez-Carreño T, Serna C (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):R182

    Article  Google Scholar 

  • Tartaj P, del Puerto Morales M, Gonzàlez-Carreño T, Veintemillas-Verdaguer S, Serna C (2005) Advantages in magnetic nanoparticles for biotechnology applications. J Magn Magn Mater 28:290–291

    Google Scholar 

  • Teeguarden J, Hinderliter P, Orr G, Thrall B, Pounds J (2007) Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci 95(2):300–312, doi:10.1093/toxsci/kfl165, http://toxsci.oxfordjournals.org/content/95/2/300.abstract

  • Thomas D, Judd S, Fawcett N (1999) Flocculation modelling: a review. Water Res 33(7):1579–1592

    Article  Google Scholar 

  • Thünemann A, Schütt D, Kaufner L, Pison U, Möhwald H (2006) Maghemite nanoparticles protectively coated with poly(ethylene imine) and poly(ethylene oxide)-block-poly(glutamic acid). Langmuir 22(5):2351–2357. doi:10.1021/la052990d

    Article  Google Scholar 

  • Tietze S, Duerr S, Alexiou C (2012) Nanoparticles for cancer therapy using magnetic forces. Nanomedicine 7(3):447–457

    Article  Google Scholar 

  • Tsouris C, Scott T (1995) Flocculation of paramagnetic particles in a magnetic field. J Colloid Interf Sci 171(2):319–330

    Article  Google Scholar 

  • Verma A, Stellacci F (2010) Effect of surface properties on nanoparticlecell interactions. Small 6(1):12–21

    Article  Google Scholar 

  • Vishista K, Gnanam F (2004) Role of deflocculants on the rheological properties of boehmite sol. Mater Lett 58:1576–81

    Article  Google Scholar 

  • Wan M, Li J (1998) Synthesis and electrical–magnetic properties of polyaniline composites. Polymer Sci 36:2799–2805

    Google Scholar 

  • Widder K, Senyei A, Scarpelli D (1978) Magnetic microspheres: a model system for site specific drug delivery in vivo. Proc Soc Exp Biol Med 58:141

    Article  Google Scholar 

  • Wiesner M (1992) Kinetics of aggregate formation in rapid mix. Water Res 26(3):379–387

    Article  Google Scholar 

  • Ying T, Yacoumi S, Tsouris C (2000) High-gradient magnetically seeded filtration. Chem Eng Sci 55(6):1101–1113

    Article  Google Scholar 

  • Zhang J, Srivastava R, Misra R (2007) Core–shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer: synthesis, characterization, and lcst of viable drug-targeting delivery system. Langmuir 23(11):6342–6351. doi:10.1021/la0636199

    Article  Google Scholar 

  • Zhang L, Granick S (2006) How to stabilize phospholipid liposomes (using nanoparticles). Nano Lett 6:694–698

    Article  Google Scholar 

  • Zhu D, Liu F, Ma L, Liu D, Wang Z (2013) Nanoparticle-based systems for t1-weighted magnetic resonance imaging contrast agents. Int J Mol Sci 14(5):10,591–10,607, doi:10.3390/ijms140510591, http://www.mdpi.com/1422-0067/14/5/10591

Download references

Acknowledgments

This research was supported by PON 254/Ric. Potenziamento del “CENTRO RICERCHE PER LA SALUTE DELL’UOMO E DELL’AMBIENTE” Cod. PONa300334. CUP: F81D11000210007. Nanotecnologie molecolari per il rilascio controllato di farmaci/NANO Molecular tEchnologies for Drug delivery NANOMED prot. 2010FPTBSH, CUP: F81J12000380001 and by “POR Calabria FSE 2007/2013—Obiettivo Operativo M2—Sostenere la realizzazione di percorsi individuali di alta formazione per giovani laureati e ricercatori presso organismi di riconosciuto prestigio nazionale e internazionale”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Cacciola.

Appendix A

Appendix A

Hydrodynamic resistance

\(D_\infty\) is the diffusion coefficient in the absence of any interparticle forces given by

$$D_\infty =D_i+D_j=\frac{k_B T}{6\pi \mu }\frac{\left( r_i+r_j\right) }{\left( r_i r_j \right) }$$
(15)

where D i and D j are the diffusion coefficients of particles i and j, respectively, \(k_B\) is the Boltzmann constant, T is the temperature, \(\mu\) is the viscosity of the medium. Denoting a function of particle separation \(D_{i,j} = b k_B T\) as the relative diffusion coefficient between particles i and j, we adopted the formulation by Jacobson (2005) for \(\frac{D_\infty }{D_{i,j}}\), since the adaption of Van der Waals/viscous collision correction factor from aerosol particles theory, thus generating a so called viscous-force correction factor to the diffusion coefficient in the continuum regime.

$$\frac{D_\infty }{D_{i_j}}=1+\frac{2.6 r_i r_j}{\left( r_i+r_j\right) ^2}\sqrt{\frac{\left( r_i r_j\right) }{\left( r_i+r_j\right) \left( r-r_i-r_j\right) }}+\frac{\left( r_i r_j\right) }{\left( r_i+r_j\right) \left( r-r_i-r_j\right) },$$
(16)

where r is the centre-to-centre distance between two flocs or, generally, aggregations, i.e. interparticle distance. Please, note that b is the relative mobility of the particles; for two spheres moving along their centreline, it can be obtained from the exact solution of Stokes’ equation (Spielman 1970).

Van der Waals interaction

Hamaker’s formula for the London-van der Waals attractive interaction energy Vvdw between spherical particles is

$$\frac{V_{{\hbox{vdw}}}}{k_B T}=-\frac{A}{6k_B T}\left[ \frac{2r_i r_j}{r^2-\left( r_i+r_j\right) ^2}+\frac{2r_i r_j}{r^2-\left( r_i-r_j\right) ^2}+\log \left( \frac{r^2-\left( r_i+r_j\right) ^2}{r^2-\left( r_i-r_j\right) ^2}\right) \right],$$
(17)

where A is the Hamaker constant, \(k_B\) is the Boltzmann constant, T is the temperature and r is the interparticle distance.

Electrostatic interaction

In the case of thin double layers, symmetrical electrolytes and dimensionless interparticle separations \(\kappa l\) \({>}4\) (where \(\kappa\) is the inverse Debye-Huckel length, a measure of the double-layer thickness), the linear superposition approximation can be used

$$\begin{aligned} V_{{\hbox{el}}}= & \, \varepsilon \left( \frac{k_B T}{e}\right) ^2 Y_i Y_j\frac{r_i r_j}{r}e^{-\kappa l} \text{, } \text{ for } \kappa l\ge 4 \\ Y_i= & \, 4\tanh \left( \frac{\psi _i}{4}\right) \text{, } \text{ for } \kappa l\ge 10 \text{ and } \varPhi _i <8 \\ \varPhi _i= & \, \frac{ze\psi _{0i}}{k_B T} \end{aligned},$$
(18)

where z represents the valence of the electrolyte dissociated in the solution, and \(\psi _{0i}\) represents the surface potential of the particle i. It is assumed that the potential of one particle remains undisturbed in the presence of the others. The inverse Debye-Huckel length \(\kappa\) is given by \(\kappa ^{-1}\cong 2.8\times 10^{-8} I^{-0.5}\), where I is the ionic strength of the solution.

This formulation is useful when interparticle distance is greater than 36 nm. For smaller distances, the Derjaguin approximation (Chung and Hogg 1985) can be used

$$V_{{\hbox{el}}}=\varepsilon \frac{r_i r_j}{r_i+r_j}\psi _i\psi _j\log \left( 1+e^{kappa l}\right).$$
(19)

Bell et al. (1970) defined \(V_{{\hbox{el}}}\) according to the following formulation:

$$V_{{\hbox{el}}}=4\pi \varepsilon \left( \frac{\left( k_B T\right) }{ze}\right) ^2\frac{r_i r_j}{r_i+r_j}Y_i Y_j e^{-\kappa l}.$$
(20)

Magnetic interaction

Chan et al. (1985) provided a formula for calculating the magnetic interaction

$$\frac{V_{{\hbox{mag}}}}{k_B T}=s\left( x\right) \left( -\frac{x^2}{3}\frac{1}{1+7x^2/150}\right) +\left( 1+s\left( x\right) \right) \left[ -2x+\log \left( 6x^2\right) -\frac{2}{3x}-\frac{7}{9x^2}\right]$$
(21)

where

$$s\left( x\right) =e^{-\log 2\left( \frac{x}{2.4}\right) ^8}$$
(22)

and

$$x=\frac{1}{k_B T}\frac{\pi d_i^3 d_j^3\chi _i\chi _j B^2}{144\,\mu _0 r^3}$$
(23)

where \(\mu _0\) is the permeability of free space, \(\chi\) is the magnetic susceptibility, B is the strength of the magnetic field, d is the particle diameter and r is the separation of the particles. But, this formulation does not seem consistent, since it does not incorporate the sphericity of flocs or aggregations. In order to consider this issue, we used the following formulation (Bell et al. 1970) for the x factor:

$$x=\frac{1}{k_B T}\frac{\pi ^2}{36} d_i^3 d_j^3\frac{\chi _i}{1+\chi _i}\frac{\chi _j}{1+\chi _j}\frac{B^2}{\mu _0^2 r^3}.$$
(24)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldassarre, F., Cacciola, M. & Ciccarella, G. A predictive model of iron oxide nanoparticles flocculation tuning Z-potential in aqueous environment for biological application. J Nanopart Res 17, 377 (2015). https://doi.org/10.1007/s11051-015-3163-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3163-6

Keywords

Navigation