A predictive model of iron oxide nanoparticles flocculation tuning Z-potential in aqueous environment for biological application

  • Francesca Baldassarre
  • Matteo Cacciola
  • Giuseppe Ciccarella
Research Paper


Iron oxide nanoparticles are the most used magnetic nanoparticles in biomedical and biotechnological field because of their nontoxicity respect to the other metals. The investigation of iron oxide nanoparticles behaviour in aqueous environment is important for the biological applications in terms of polydispersity, mobility, cellular uptake and response to the external magnetic field. Iron oxide nanoparticles tend to agglomerate in aqueous solutions; thus, the stabilisation and aggregation could be modified tuning the colloids physical proprieties. Surfactants or polymers are often used to avoid agglomeration and increase nanoparticles stability. We have modelled and synthesised iron oxide nanoparticles through a co-precipitation method, in order to study the influence of surfactants and coatings on the aggregation state. Thus, we compared experimental results to simulation model data. The change of Z-potential and the clusters size were determined by Dynamic Light Scattering. We developed a suitable numerical model to predict the flocculation. The effects of Volume Mean Diameter and fractal dimension were explored in the model. We obtained the trend of these parameters tuning the Z-potential. These curves matched with the experimental results and confirmed the goodness of the model. Subsequently, we exploited the model to study the influence of nanoparticles aggregation and stability by Z-potential and external magnetic field. The highest Z-potential is reached up with a small external magnetic influence, a small aggregation and then a high suspension stability. Thus, we obtained a predictive model of Iron oxide nanoparticles flocculation that will be exploited for the nanoparticles engineering and experimental setup of bioassays.


Iron oxide nanoparticles Coating Z-potential  Flocculation Computational modelling 



This research was supported by PON 254/Ric. Potenziamento del “CENTRO RICERCHE PER LA SALUTE DELL’UOMO E DELL’AMBIENTE” Cod. PONa300334. CUP: F81D11000210007. Nanotecnologie molecolari per il rilascio controllato di farmaci/NANO Molecular tEchnologies for Drug delivery NANOMED prot. 2010FPTBSH, CUP: F81J12000380001 and by “POR Calabria FSE 2007/2013—Obiettivo Operativo M2—Sostenere la realizzazione di percorsi individuali di alta formazione per giovani laureati e ricercatori presso organismi di riconosciuto prestigio nazionale e internazionale”.


  1. Baalousha M (2008) Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter. Environ Toxicol Chem 27(9):1875–1882CrossRefGoogle Scholar
  2. Baalousha M (2009) Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter. Sci Total Environ 407(6):2093–2101. doi: 10.1016/j.scitotenv.2008.11.022 CrossRefGoogle Scholar
  3. Baldassarre F, Vergaro V, Scarlino F, Santis FD, Lucarelli G, della Torre A, Ciccarella G, Rinaldi R, Giannelli G, Leporatti S (2012) Polyelectrolyte capsules as carriers for growth factor inhibitor delivery to hepatocellular carcinoma. Macromol Biosci 12(5):656–665CrossRefGoogle Scholar
  4. Barratt G (2003) Colloidal drug carriers: achievements and perspectives. Cell Mol Life Sci 60:21–37CrossRefGoogle Scholar
  5. Bautista M, Bomati-Miguel O, Zhao X, Morales M, Gonzàlez-Carreño T, Alejo R, Ruiz-Cabello JD, Veintemillas-Verdaguer S (2004) Comparative study of ferrofluids based on dextran-coated iron oxide and metal nanoparticles for contrast agents in magnetic resonance imaging. Nanotechnology 15:S154S159CrossRefGoogle Scholar
  6. Bell G, Levine S, McCartney L (1970) Approximate methods of determining the double-layer free energy of interaction between two charged colloidal spheres. J Colloid Interf Sci 33:335–359CrossRefGoogle Scholar
  7. Berry C, Curtis A (2003) Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):R198–R206CrossRefGoogle Scholar
  8. Berry C, Wells S, Charles S, Aitchison G, Curtis A (2004) Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials 25:54055413Google Scholar
  9. Bulte JWM, Kraitchman D (2004) Iron oxide mr contrast agents for molecular and cellular imaging. NMR Biomed 17(7):484–499. doi: 10.1002/nbm.924 CrossRefGoogle Scholar
  10. Butterworth M, Bell S, Armes S, Simpson A (1996) Synthesis and characterization of polypyrrole–magnetite–silica particles. J Colloid Interf Sci 183(1):91–99. doi: 10.1006/jcis.1996.0521 CrossRefGoogle Scholar
  11. Chan D, Henderson D, Barojas J, Homola A (1985) The stability of a colloidal suspension of coated magnetic particles in an aqueous solution. IBM J Res Dev 29(1):1117CrossRefGoogle Scholar
  12. Chin CJ, Yiacoumi S, Tsouris C (1998) Shear-induced occulation of colloidal particles in stirred tanks. J Colloid Interf Sci 206(2):532–545CrossRefGoogle Scholar
  13. Cho E, Zhang Q, Xia Y (2011) The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol 6:385–391CrossRefGoogle Scholar
  14. Chung H, Hogg R (1985) Stability criteria for fine-particle dispersions. Coll Surf 15:119–135. doi: 10.1016/0166-6622(85)80060-3 CrossRefGoogle Scholar
  15. Cornell R, Schertmann U (1996) The iron oxides: structure, properties, reactions, occurrence and uses. Mineral Mag 61(408):740–741Google Scholar
  16. Dickson D, L G et al (2012) Dispersion and stability of bare hematite nanoparticles: effect of dispersion tools, nanoparticle concentration, humic acid and ionic strength. Sci Total Environ 419:170–177CrossRefGoogle Scholar
  17. Faure B, Salazar-Alvarez G, Bergström L (2011) Hamaker constants of iron oxide nanoparticles. Langmuir 27(14):8659–8664CrossRefGoogle Scholar
  18. Fried T, Shemer G, Markovich G (2001) Ordered two-dimensional arrays of ferrite nanoparticles. Adv Mater 13:1158CrossRefGoogle Scholar
  19. Frienlander S, Pui D (2004) Emerging issues in nanoparticle aerosol science and technology. J Nanopart Res 6(2):313–320. doi: 10.1023/B:NANO.0000034725.89027.6b
  20. Gao J, Li L, Ho P, Mak G, Gu H, Xu B (2006) Combining fluorescent probes and biofunctional magnetic nanoparticles for rapid detection of bacteria in human blood. Adv Mater 18:3145–3148CrossRefGoogle Scholar
  21. Gu H, Ho P, Tsang K, Wang L, Xu B (2003) Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration. J Am Chem Soc 125(51):15,702–15,703CrossRefGoogle Scholar
  22. Gu H, Xu K, Xu C, Xu B (2006) Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun 9:941–949. doi: 10.1039/B514130C CrossRefGoogle Scholar
  23. Gupta A, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021. doi: 10.1016/j.biomaterials.2004.10.012 CrossRefGoogle Scholar
  24. Harris LA, Goff JD, Carmichael AY, Riffle JS, Harburn JJ, Pierre TGS, Saunders M (2003) Magnetite nanoparticle dispersions stabilized with triblock copolymers. Chem Mater 15(6):1367–1377. doi: 10.1021/cm020994n CrossRefGoogle Scholar
  25. Hidber P, Graule T, Gauckler L (1996) Citric acid—a dispersant for aqueous alumina suspensions. J Am Ceram Soc 79(7):1857–1867. doi: 10.1111/j.1151-2916.1996.tb08006.x CrossRefGoogle Scholar
  26. Honary S, Zahir F (2013) Effect of zeta potential on the properties of nano-drug delivery systems: a review (part 1). Trop J Pharm Res 12(2):255–264Google Scholar
  27. Hu JD, Zevi Y, Kou XM, Xiao J, Wang XJ, Jin Y (2010) Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions. Sci Total Environ 408(16):3477–3489. doi: 10.1016/j.scitotenv.2010.03.033 CrossRefGoogle Scholar
  28. Huber D (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501. doi: 10.1002/smll.200500006 CrossRefGoogle Scholar
  29. Ito A, Tanaka K, Honda H, Abe S, Yamaguchi H, Kobayashi T (2003) Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles. J Biosci Bioeng 96(4):364–369. doi: 10.1016/S1389-1723(03)90138-1 CrossRefGoogle Scholar
  30. Ito A, Hayashida M, Honda H, Hata K, Kagami H, Ueda M, Kobayashi T (2004a) Construction and harvest of multilayered keratinocyte sheets using magnetite nanoparticles and magnetic force. Tissue Eng 10:873–880CrossRefGoogle Scholar
  31. Ito A, Takizawa Y, Honda H, Kagami HHH, Ueda M, Kobayashi T (2004b) Tissue engineering using magnetite nanoparticles and magnetic force: heterotypic layers of cocultured hepatocytes and endothelial cells. Tissue Eng 10:833840Google Scholar
  32. Ito A, Hibino E, Kobayashi C, Terasaki H, Kagami H, Ueda M, Kobayashi T, Honda H (2005) Construction and delivery of tissue-engineering human retinal pigment epithelial cell sheets using magnetite nanoparticles and magnetic force. Tissue Eng 11:489–496CrossRefGoogle Scholar
  33. Ito A, Honda H, Kobayashi T (2006) Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of heat-controlled necrosis with heat shock protein expression. Cancer Immunol Immunother 55(3):320–328. doi: 10.1007/s00262-005-0049-y CrossRefGoogle Scholar
  34. Jacobson M (2005) Fundamentals of atmospheric modeling, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  35. Jiang Q, Logan B (1991) Fractal dimensions of aggregates determined from steady-state size distributions. Environ Sci Technol 25(12):2031–2038. doi: 10.1021/es00024a007 CrossRefGoogle Scholar
  36. Kato H, Suzuki M, Fujita K, Horie M, Endoh S, Yoshida Y, Iwahashi H, Takahashi K, Nakamura A, Kinugasa S (2009) Reliable size determination of nanoparticles using dynamic light scattering method for in vitro toxicology assessment. Toxicol In Vitro 23(5):927–934. doi: 10.1016/j.tiv.2009.04.006 CrossRefGoogle Scholar
  37. Kell A, Stewart G, Ryan S, Peytavi R, Boissinot M, Huletsky A, Bergeron M, Simard B (2008) Vancomycin-modified nanoparticles for efficient targeting and preconcentration of gram-positive and gram-negative bacteria. ACS Nano 2(9):1777–1788. doi: 10.1021/nn700183g CrossRefGoogle Scholar
  38. Kendall K, Kendall M, Rehfeldt F (2011a) Adhesion of nanoparticles. Adhesion of cells. Viruses and nanoparticles. Springer, NetherlandsCrossRefGoogle Scholar
  39. Kendall K, Kendall M, Rehfeldt F (2011b) Modelling nanoparticle, virus and cell adhesion. Adhesion of cells. Viruses and nanoparticles. Springer, NetherlandsCrossRefGoogle Scholar
  40. Kusters K (1991) The influence of turbulence on aggregation of small particles in agitated vessels. PhD thesis, Eindhoven University of Technology, The NetherlandsGoogle Scholar
  41. Larsen B, Haag M, Serkova N, Shroyer K, Stoldt C (2008) Controlled aggregation of superparamagnetic iron oxide nanoparticles for the development of molecular magnetic resonance imaging probes. Nanotechnology 19(26):265102, http://stacks.iop.org/0957-4484/19/i=26/a=265102
  42. Laurent S, Dutz S, Häfeli U, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interf Sci 166(1–2):8–23. doi: 10.1016/j.cis.2011.04.003 Google Scholar
  43. Leeuwenburgh S, Ana I, Jansen J (2010) Sodium citrate as an effective dispersant for the synthesis of inorganic–organic composites with a nanodispersed mineral phase. Acta Biomater 6(3):836–844. doi: 10.1016/j.actbio.2009.09.005 CrossRefGoogle Scholar
  44. Leroux J (2007) Injectable nanocarriers for biodetoxification. Nat Nanotechnol 2:679–684CrossRefGoogle Scholar
  45. Li Z, Wei L, Gao M, Lei H (2005) One-pot reaction to synthesize biocompatible magnetite nanoparticles. Adv Mater 17(8):1001–1005. doi: 10.1002/adma.200401545 CrossRefGoogle Scholar
  46. Lübbe A, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, Matthias M, Dörken B, Herrmann F, Gürtler R, Hohenberger P, Haas N, Sohr R, Sander B, Lemke AJ, Ohlendorf D, Huhnt W, Huhn D (1996) Clinical experiences with magnetic drug targeting: a phase i study with 4-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 56(20):4686–4693, http://cancerres.aacrjournals.org/content/56/20/4686.abstract
  47. Mancarella S, Greco V, Baldassarre F, Vergara D, Maffia M, Leporatti S (2015) Polymer-coated magnetic nanoparticles for curcumin delivery to cancer cells. Macromol Biosci. doi: 10.1002/mabi.201500142
  48. Mendelev V, Ivanov A (2005) Magnetic properties of ferrofluids: an influence of chain aggregates. J Magn Magn Mater 289:211–214. doi: 10.1016/j.jmmm.2004.11.061 CrossRefGoogle Scholar
  49. Mikhaylova M, Kim D, Bobrysheva N, Osmolowsky M, Semenov V, Tsakalakos T, Muhammed M (2004) Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir 20(6):2472–2477. doi: 10.1021/la035648e CrossRefGoogle Scholar
  50. Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14:2161–2175. doi: 10.1039/B402025A CrossRefGoogle Scholar
  51. Neuberger T, Schöpf B, Hofmann H, Hofmann M, von Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293(1):483–496. doi: 10.1016/j.jmmm.2005.01.064 (proceedings of the Fifth International Conference on Scientific and Clinical Apllications of Magnetic Carriers)CrossRefGoogle Scholar
  52. Nobuto H, Sugita T, Kubo T, Shimose S, Yasunaga Y, Murakami T, Ochi M (2004) Evaluation of systemic chemotherapy with magnetic liposomal doxorubicin and a dipole external electromagnet. Int J Cancer 109(4):627–635. doi: 10.1002/ijc.20035 CrossRefGoogle Scholar
  53. Papaefthymiou G (2009) Nanoparticle magnetism. Nano Today 4(5):438–447, doi: 10.1016/j.nantod.2009.08.006, http://www.sciencedirect.com/science/article/pii/S1748013209000929
  54. Ponder S, Darab J, Mallouk T (2000) Remediation of cr(vi) and pb(ii) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34(12):2564–2569. doi: 10.1021/es9911420 CrossRefGoogle Scholar
  55. Roca A, Veintemillas-Verdaguer S, Port M, Robic C, Serna C, Morales M (2009) Effect of nanoparticle and aggregate size on the relaxometric properties of mr contrast agents based on high quality magnetite nanoparticles. J Phys Chem B 113(19):7033–7039. doi: 10.1021/jp807820s CrossRefGoogle Scholar
  56. Rolliè S, Briesen J, Sundmacher K (2009) Discrete bivariate population balance modelling of heteroaggregation processes. J Colloid Interf Sci 336(2):551–564. doi: 10.1016/j.jcis.2009.04.031 CrossRefGoogle Scholar
  57. Ruysschaert T, Paquereau L, Winterhalter M, Fournier D (2006) Stabilization of liposomes through enzymatic polymerization of dna. Nano Lett 6(12):2755–2757. doi: 10.1021/nl061724x CrossRefGoogle Scholar
  58. Safarik I, Safarikova M (2004) Magnetic techniques for the isolation and purification of proteins and peptides. Biomagn Res Technol 2:7CrossRefGoogle Scholar
  59. Saffman P, Turner J (1956) On the collision of drops in turbulent clouds. J Fluid Mech 1:16–30. doi: 10.1017/S0022112056000020 CrossRefGoogle Scholar
  60. Saiyed Z, Telang S, Ramchand C (2003) Application of magnetic techniques in the field of drug discovery and biomedicine. Biomagn Res Technol 1:2CrossRefGoogle Scholar
  61. Saleh N, Phenrat T, Sirk K, Dufour B, Ok J, Sarbu T, Matyjaszewski K, Tilton R, Lowry G (2005) Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Lett 5(12):2489–2494. doi: 10.1021/nl0518268 CrossRefGoogle Scholar
  62. Sayes C, Reed K, Warheit DB (2007) Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97(1):163–180, doi: 10.1093/toxsci/kfm018, http://toxsci.oxfordjournals.org/content/97/1/163.abstract, http://toxsci.oxfordjournals.org/content/97/1/163.full.pdf+html
  63. Selomulya C, Bushell G, Amal R, Waite T (2003) Understanding the role of restructuring in flocculation: the application of a population balance model. Chem Eng Sci 58(2):327–338, doi: 10.1016/S0009-2509(02)00523-7, http://www.sciencedirect.com/science/article/pii/S0009250902005237
  64. Shafi K, Ulman A, Yan X, N-LYang, Estournés C, White H, Rafailovich M (2001) Sonochemical synthesis of functionalized amorphous iron oxide nanoparticles. Langmuir 17(16):5093–5097. doi: 10.1021/la010421+ CrossRefGoogle Scholar
  65. Shen L, Laibinis P, Hatton T (1999) Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interfaces. Langmuir 15:447–453CrossRefGoogle Scholar
  66. Shinkai M, Le B, Honda H, Yoshikawa K, Shimizu K, Saga S, Wakabayashi T, Yoshida J, Kobayashi T (2001) Targeting hyperthermia for renal cell carcinoma using human mn antigen-specific magnetoliposomes. Jpn J Cancer Res 92:1138–1145CrossRefGoogle Scholar
  67. Smoluchowski M (1916) Drei vortrge ber diffusion, brownsche molekularbewegung und koagulation von kolloidteilchen. JPhys Zeit 17:557571Google Scholar
  68. Sousa M, Tourinho F, Depeyrot J, da Silva G, Lara M (2001) New electric double-layered magnetic fluids based on copper, nickel, and zinc ferrite nanostructures. J Phys Chem B 105(6):1168–1175. doi: 10.1021/jp0039161 CrossRefGoogle Scholar
  69. Spielman L (1970) Viscous interactions is brownian coagulation. J Colloid Interf Sci 33(4):562–570CrossRefGoogle Scholar
  70. Sun YP, q Li X, Cao J, x Zhang W, Wang H (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interf Sci 120(1–3):47 56. doi: 10.1016/j.cis.2006.03.001 Google Scholar
  71. Suzuki M, Shinkai M, Honda H, Kobayashi T (2003) Anticancer effect and immune induction by hyperthermia of malignant melanoma using magnetite cationic liposomes. Melanoma Res 13:129–135CrossRefGoogle Scholar
  72. Taboada-Serrano P, Chin CJ, Yiacoumi S, Tsouris C (2005) Modeling aggregation of colloidal particles. Curr Opin Colloid Interf Sci 10(3–4):123–132CrossRefGoogle Scholar
  73. Tanimoto A, Oshio K, Suematsu M, Pouliquen D, Stark D (2001) Relaxation effects of clustered particles. J Magn Reson Imaging 14(1):72–77. doi: 10.1002/jmri.1153 CrossRefGoogle Scholar
  74. Tartaj P, del Puerto Morales M, Veintemillas-Verdaguer S, Gonzàlez-Carreño T, Serna C (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):R182CrossRefGoogle Scholar
  75. Tartaj P, del Puerto Morales M, Gonzàlez-Carreño T, Veintemillas-Verdaguer S, Serna C (2005) Advantages in magnetic nanoparticles for biotechnology applications. J Magn Magn Mater 28:290–291Google Scholar
  76. Teeguarden J, Hinderliter P, Orr G, Thrall B, Pounds J (2007) Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci 95(2):300–312, doi: 10.1093/toxsci/kfl165, http://toxsci.oxfordjournals.org/content/95/2/300.abstract
  77. Thomas D, Judd S, Fawcett N (1999) Flocculation modelling: a review. Water Res 33(7):1579–1592CrossRefGoogle Scholar
  78. Thünemann A, Schütt D, Kaufner L, Pison U, Möhwald H (2006) Maghemite nanoparticles protectively coated with poly(ethylene imine) and poly(ethylene oxide)-block-poly(glutamic acid). Langmuir 22(5):2351–2357. doi: 10.1021/la052990d CrossRefGoogle Scholar
  79. Tietze S, Duerr S, Alexiou C (2012) Nanoparticles for cancer therapy using magnetic forces. Nanomedicine 7(3):447–457CrossRefGoogle Scholar
  80. Tsouris C, Scott T (1995) Flocculation of paramagnetic particles in a magnetic field. J Colloid Interf Sci 171(2):319–330CrossRefGoogle Scholar
  81. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticlecell interactions. Small 6(1):12–21CrossRefGoogle Scholar
  82. Vishista K, Gnanam F (2004) Role of deflocculants on the rheological properties of boehmite sol. Mater Lett 58:1576–81CrossRefGoogle Scholar
  83. Wan M, Li J (1998) Synthesis and electrical–magnetic properties of polyaniline composites. Polymer Sci 36:2799–2805Google Scholar
  84. Widder K, Senyei A, Scarpelli D (1978) Magnetic microspheres: a model system for site specific drug delivery in vivo. Proc Soc Exp Biol Med 58:141CrossRefGoogle Scholar
  85. Wiesner M (1992) Kinetics of aggregate formation in rapid mix. Water Res 26(3):379–387CrossRefGoogle Scholar
  86. Ying T, Yacoumi S, Tsouris C (2000) High-gradient magnetically seeded filtration. Chem Eng Sci 55(6):1101–1113CrossRefGoogle Scholar
  87. Zhang J, Srivastava R, Misra R (2007) Core–shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer: synthesis, characterization, and lcst of viable drug-targeting delivery system. Langmuir 23(11):6342–6351. doi: 10.1021/la0636199 CrossRefGoogle Scholar
  88. Zhang L, Granick S (2006) How to stabilize phospholipid liposomes (using nanoparticles). Nano Lett 6:694–698CrossRefGoogle Scholar
  89. Zhu D, Liu F, Ma L, Liu D, Wang Z (2013) Nanoparticle-based systems for t1-weighted magnetic resonance imaging contrast agents. Int J Mol Sci 14(5):10,591–10,607, doi: 10.3390/ijms140510591, http://www.mdpi.com/1422-0067/14/5/10591

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Cultural HeritageUniversity of SalentoLecceItaly
  2. 2.University “Mediterranea” of Reggio Calabria, DICEAMReggio CalabriaItaly
  3. 3.Department of Innovation EngineeringUniversity of SalentoLecceItaly

Personalised recommendations