Organic–inorganic hybrid nanocomposite for enhanced photo-sensing of PFO-DBT:MEH-PPV:PC71BM blend-based photodetector

  • Qayyum Zafar
  • Mansoor Ani Najeeb
  • Zubair Ahmad
  • Khaulah Sulaiman
Research Paper


The sensing parameters of previously reported PFO-DBT:MEH-PPV:PC71BM ternary blend-based organic photodetector have been improved in the present study. Improvement has been successfully demonstrated by doping TiO2 nanoparticles in the PEDOT:PSS thin film. TiO2 nanoparticles of 50, 100 and 250 nm diameters have initially been dispersed in PEDOT:PSS, and the resulting suspension has been spun coated on glass substrates and subjected to UV/vis and PL study. Thin film of PEDOT:PSS–TiO2 (100 nm) has shown maximum quenching in PL spectra, along with fairly good visible-light absorption. For further studies, 5 wt% TiO2 (100 nm) nanoparticles dispersion in PEDOT:PSS has been utilized for the fabrication of ITO/PEDOT:PSS–TiO2/PFO-DBT:MEH-PPV:PC71BM/Al photodiode. The PEDOT:PSS–TiO2 suspension has been spun coated onto the ITO substrates primarily and annealed to densify the film by vaporizing water contents in the film. A ternary blend of PFO-DBT:MEH-PPV:PC71BM in optimized volumetric ratio has been sequentially spun-cast to serve as a photoactive film. Significantly improved values of the sensing parameters such as responsivity (4 mA/W) and photo-to-dark current ratio (~6.4 × 104) have also been found. Response/recovery times of the fabricated sensor remain almost the same (<1 s) as previously reported for PFO-DBT:MEH-PPV:PC71BM ternary blend.


PFO-DBT MEH-PPV Light scattering Hybrid organic–inorganic composite Hybrid photodetector Nanoscale sensor 



This research was supported by High Impact Research MoE Grant UM.S/625/3/HIR/MoE/SC/26 with account number UM.0000080/HIR.C3, Flagship grant project number FL001C-14AET and IPPP research grant PG089-2012B from University of Malaya.

Author Contributions

Qayyum Zafar, Mansoor Ani and Zubair Ahmad have jointly conducted the experimental work. Experimental designing has been done by Zubair Ahmad. Khaulah Sulaiman has made the significant intellectual contribution to the paper by supervising this research work.

Compliance with ethical standards

Conflict of Interest

The authors declare no conflict of interest.


  1. Ahmad Z, Abdullah SM, Sulaiman K (2013a) Bulk heterojunction photodiode: to detect the whole visible spectrum. Measurement 46:2073–2076CrossRefGoogle Scholar
  2. Ahmad Z et al (2013b) MEH-PPV/Alq3-based bulk heterojunction photodetector. Chin Phys B 22:100701–100705CrossRefGoogle Scholar
  3. An KH, O’Connor B, Pipe KP, Shtein M (2009) Organic photodetector with spectral response tunable across the visible spectrum by means of internal optical microcavity. Org Electron 10:1152–1157CrossRefGoogle Scholar
  4. Bai Y, Xing Z, Yu H, Li Z, Amal R, Wang L (2013) Porous titania nanosheet/nanoparticle hybrids as photoanodes for dye-sensitized solar cells. ACS Appl Mater Interfaces 5:12058–12065CrossRefGoogle Scholar
  5. Cano M et al (2010) A transparent TMPyP/TiO2 composite thin film as an HCl sensitive optochemical gas sensor. Sens Actuators B 150:764–769CrossRefGoogle Scholar
  6. Deepak T, Anjusree G, Thomas S, Arun T, Nair SV, Nair AS (2014) A review on materials for light scattering in dye-sensitized solar cells. RSC Adv 4:17615–17638CrossRefGoogle Scholar
  7. Dennler G, Scharber MC, Brabec CJ (2009) Polymer-Fullerene bulk-heterojunction solar cells. Adv Mater 21:1323–1338CrossRefGoogle Scholar
  8. Fujishima A (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  9. Hamwi S, Riedl T, Kowalsky W (2011) An organic pin homojunction as ultra violet light emitting diode and visible-blind photodiode in one. Appl Phys Lett 99:053301CrossRefGoogle Scholar
  10. Heo JH et al (2013) Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat Photonics 7:486–491CrossRefGoogle Scholar
  11. Hsiao Y-S, Charan S, Wu F-Y, Chien F-C, Chu C-W, Chen P, Chen F-C (2012) Improving the light trapping efficiency of plasmonic polymer solar cells through photon management. J Phys Chem C 116:20731–20737CrossRefGoogle Scholar
  12. Karimov KS, Saleem M, Karieva Z, Mateen A, Chani MTS, Zafar Q (2012) Humidity sensing properties of Cu2O-PEPC nanocomposite films. J Semicond 33:073001CrossRefGoogle Scholar
  13. Kernazhitsky L, Shymanovska V, Gavrilko T, Naumov V, Kshnyakin V (2013) Optical absorption of polydisperse TiO2: Effect of surface doping by transition metal cations Ukrainian. J Phys Opt 14:15–23CrossRefGoogle Scholar
  14. Kityakarn S, Worayingyong A, Suramitr A, Smith M (2013) Ce-doped nanoparticles of TiO2: rutile-to-brookite phase transition and evolution of Ce local-structure studied with XRD and XANES. Mater Chem Phys 139:543–549CrossRefGoogle Scholar
  15. Konstantatos G, Clifford J, Levina L, Sargent EH (2007) Sensitive solution-processed visible-wavelength photodetectors. Nat Photonics 1:531–534CrossRefGoogle Scholar
  16. Krebs FC (2009) Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol Energy Mater Sol Cells 93:394–412. doi: 10.1016/j.solmat.2008.10.004 CrossRefGoogle Scholar
  17. Krishnan R (1934) The scattering of light by particles suspended in a medium of higher refractive index. In: Proceedings of the Indian Academy of Sciences, section A, 1934. Indian Academy of Sciences, pp 147–155Google Scholar
  18. Lee SJ, bin Mohd Yusoff AR, Jang J (2014) Photovoltaic devices with a PEDOT: PSS: WO x hole transport layer. RSC Adv 4:20242–20246CrossRefGoogle Scholar
  19. Liang Y et al (2010) For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater 22:E135–E138CrossRefGoogle Scholar
  20. Lim BT, Kang I, Kim CM, Kim SY, Kwon S-K, Kim Y-H, Chung DS (2014) Solution-processed high-performance photodetector based on a new triisopropylsilylethynyl anthracene derivative. Org Electron 15(8):1856–1861CrossRefGoogle Scholar
  21. Liu Y et al (2012) Synergistic effect of surface plasmon resonance and constructed hierarchical TiO2 spheres for dye-sensitized solar cells. Nanoscale 4:6863–6869CrossRefGoogle Scholar
  22. Liu C-B, Liu M, Che G-B, Su B, Wang L, Zhang X-X, Zhang S (2013) High performance organic ultraviolet photodetectors based on novel phosphorescent Cu (I) complexes. Solid-State Electron 89:68–71CrossRefGoogle Scholar
  23. Ma X, Wang M, Li G, Chen H, Bai R (2006) Preparation of polyaniline–TiO2 composite film with in situ polymerization approach and its gas-sensitivity at room temperature. Mater Chem Phys 98:241–247CrossRefGoogle Scholar
  24. Maiaugree W, Pimanpang S, Towannang M, Saekow S, Jarernboon W, Amornkitbamrung V (2012) Optimization of TiO2 nanoparticle mixed PEDOT–PSS counter electrodes for high efficiency dye sensitized solar cell. J Non-Cryst Solids 358:2489–2495CrossRefGoogle Scholar
  25. Murugan C, Subramanian E, Padiyan DP (2014) p–n Heterojunction formation in polyaniline–SnO2 organic–inorganic hybrid composite materials leading to enhancement in sensor functionality toward benzene and toluene vapors at room temperature. Synth Met 192:106–112CrossRefGoogle Scholar
  26. Novotny CJ, Yu ET, Yu PK (2008) InP nanowire/polymer hybrid photodiode. Nano Lett 8:775–779CrossRefGoogle Scholar
  27. Otterstedt J-E, Brandreth DA (1998) Small particles technology. Springer Science & Business Media, New YorkCrossRefGoogle Scholar
  28. Pottier A, Chanéac C, Tronc E, Mazerolles L, Jolivet J-P (2001) Synthesis of brookite TiO2 nanoparticlesby thermolysis of TiCl4 in strongly acidic aqueous media. J Mater Chem 11:1116–1121CrossRefGoogle Scholar
  29. Pradhan B, Sharma AK, Ray AK (2009) A simple hybrid inorganic-polymer photodiode. J Phys D 42:165308CrossRefGoogle Scholar
  30. Rakhshani A (2014) Visible light emission and UV light detection properties of solution-grown ZnO/polymer heterojunction diodes on stainless steel foil. Appl Surf Sci 311:614–620CrossRefGoogle Scholar
  31. Rammelt U, Hebestreit N, Fikus A, Plieth W (2001) Investigation of polybithiophene/n-TiO2 bilayers by electrochemical impedance spectroscopy and photoelectrochemistry. Electrochim Acta 46:2363–2371CrossRefGoogle Scholar
  32. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv Mater 18:789–794CrossRefGoogle Scholar
  33. Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:15CrossRefGoogle Scholar
  34. Takahashi K, Seto K, Yamaguchi T, J-i Nakamura, Yokoe C, Murata K (2004) Performance enhancement by blending an electron acceptor in TiO2/polyphenylenevinylene/Au solid-state solar cells. Chem Lett 33:1042–1043CrossRefGoogle Scholar
  35. Wang S, Kang Y, Wang L, Zhang H, Wang Y, Wang Y (2013) Organic/inorganic hybrid sensors: a review. Sens Actuators B 182:467–481CrossRefGoogle Scholar
  36. Wang X et al (2014) Efficient organic near-infrared photodetectors based on lead phthalocyanine/C60 heterojunction. Org Electron 15:2367–2371. doi: 10.1016/j.orgel.2014.07.008 CrossRefGoogle Scholar
  37. Yang D, Zhou X, Ma D (2013) Fast response organic photodetectors with high detectivity based on rubrene and C60. Org Electron 14:3019–3023CrossRefGoogle Scholar
  38. Yoo K, Kang K, Chen Y, Han K, Kim J (2008) The effect of TiO2 nanoparticle concentration on conduction mechanism for TiO2-polymer diode. Appl Phys Lett 93:192113CrossRefGoogle Scholar
  39. Yuan Z (2014) A photodiode with high rectification ratio and low turn-on voltage based on ZnO nanoparticles and SubPc planar heterojunction. Physica E 56:160–164CrossRefGoogle Scholar
  40. Zafar Q, Ahmad Z, Sulaiman K, Hamzah AS, Rahman ZA (2014) A MEHPPV/VOPcPhO composite based diode as a photodetector. Sens Actuators A 206:138–143CrossRefGoogle Scholar
  41. Zafar Q, Ahmad Z, Sulaiman K (2015) PFO-DBT: MEH-PPV: PC71BM ternary blend assisted platform as a photodetector. Sensors 15:965–978CrossRefGoogle Scholar
  42. Zhang Q, Myers D, Lan J, Jenekhe SA, Cao G (2012) Applications of light scattering in dye-sensitized solar cells. Phys Chem Chem Phys 14:14982–14998CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Qayyum Zafar
    • 1
  • Mansoor Ani Najeeb
    • 1
  • Zubair Ahmad
    • 2
  • Khaulah Sulaiman
    • 1
  1. 1.Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Electrical Engineering, College of EngineeringQatar UniversityDohaQatar

Personalised recommendations