Advertisement

Methodological issues about techniques for the spiking of standard OECD soil with nanoparticles: evidence of different behaviours

  • Maria Lucia Miglietta
  • Gabriella Rametta
  • Sonia Manzo
  • Antonio Salluzzo
  • Juri Rimauro
  • Girolamo Di Francia
Perspectives

Abstract

The aim of this study is to investigate at what extent the results of standard nanoparticle (NP) toxicity testing methodologies are affected by the different exposure procedures on soil organisms. In this view, differences in physicochemical properties of ZnO NPs (<100 nm), ZnO bulk (<200 nm) and ionic Zinc (ZnCl2) and their ecotoxicological potential toward Lepidium sativum were investigated with respect to three different spiking methods. Results show that the spiking procedures give homogeneous distribution of the testing nanomaterial in soil but the physicochemical and ecotoxicological properties of the testing species differ according to the spiking procedure. Dry spiking produced the highest ZnO solubility whereas spiking through dispersions of ZnO in water and in aqueous soil extracts produced the lowest. At the same time, the ecotoxic effects showed different trends with regard to the spiking route. The need for a definition of agreed methods concerning the NP spiking procedures is, therefore, urgent.

Keywords

Nanoparticles Terrestrial ecosystems Spiking procedures International collaboration 

References

  1. Batley GE, Kirby JK, McLaughlin MJ (2013) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46:854–862. doi: 10.1021/ar2003368 CrossRefGoogle Scholar
  2. Cai L, Tong M, Wang X, Kim H (2014) Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand. Environ Sci Technol 48:7323–7332. doi: 10.1021/es5019652 CrossRefGoogle Scholar
  3. Chen CY, Jafvert CT (2011) The role of surface functionalization in the solar light-induced production of reactive oxygen species by single-walled carbon nanotubes in water. Carbon 49:5099–5106. doi: 10.1016/j.carbon.2011.07.029 CrossRefGoogle Scholar
  4. Cheng Y, Yin L, Lin S, Wiesner M, Bernhardt E, Liu J (2011) Toxicity reduction of polymer stabilized silver nanoparticles by sunlight. J Phys Chem C 115:4425–4432. doi: 10.1021/jp109789j CrossRefGoogle Scholar
  5. Crane M, Handy RD, Garrod J, Owen R (2008) Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles. Ecotoxicology 17:421–437. doi: 10.1007/s10646-008-0215-z CrossRefGoogle Scholar
  6. ENV/JM/MONO(2014)1 Ecotoxicology and environmental fate of manufactured nanomaterials: test guidelinesGoogle Scholar
  7. EPA (1996) United States Environmental Protection Agency 712-C-96-154 Ecological effects test guidelines. OPPTS 850.4200. Seed Germination/Root Elongation Toxicity TestGoogle Scholar
  8. Handy RD, Cornelis G, Fernandes T, Tsyusko O, Decho A, Sabo-Attwood T, Metcalfe C, Steevens JA, Klaine SJ, Koelmans AA, Horne N (2012a) Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Environ Toxicol Chem 31:15–31. doi: 10.1002/etc.706 CrossRefGoogle Scholar
  9. Handy RD, van den Brink N, Chappell M, Mühling M, Behra R, Dušinská M, Simpson P, Ahtiainen J, Jha AN, Seiter J, Bednar A, Kennedy A, Fernandes TF, Riediker M (2012b) Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far? Ecotoxicology 21:933–972. doi: 10.1007/s10646-012-0862-y CrossRefGoogle Scholar
  10. Hofman J, Hovorková I, Machát J (2009) Ecotoxicological characterization of waste—results and experiences of an international ring test. Moser H., Römbke J. (eds), Dessau: Germany, pp 223–230Google Scholar
  11. Hu CW, Li M, Cui YB, Li DS, Chen J, Yang LY (2010) Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eiseniafetida. Soil Biol Biochem 42:586–591CrossRefGoogle Scholar
  12. Hund-Rinke K, Schlich K, Klawonn T (2012) Influence of application techniques on the ecotoxicological effects of nanomaterials in soil. Environ Sci Eur 24:30. doi: 10.1186/2190-4715-24-30 CrossRefGoogle Scholar
  13. Hunter RJ (1981) Zeta potential in colloid science: principles and applications. Academic Press, LondonGoogle Scholar
  14. Johansen A, Pedersen A, Jensen KA, Karlson U, Hansen BM, Scott-Fordsmand JJ, Winding A (2008) Effects of C-60 fullerene nanoparticles on soil bacteria and protozoans. Environ Toxicol Chem 27:1895–1903CrossRefGoogle Scholar
  15. Josko I, Oleszczuk P (2014) Phytotoxicity of nanoparticles-problems with bioassay choosing and sample preparation. Environ Sci Pollut Res. doi: 10.1007/s11356-014-2865-0 Google Scholar
  16. Lopez-Serrano A, Olivas RM, Landaluze JS, Camara C (2014) Nanoparticles: a global vision. Characterization, separation, and quantification methods. Potential environmental and health impact. Anal Methods 2014(6):38CrossRefGoogle Scholar
  17. Lowry GV, Gregory KB, Apte SC, Lead JR (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–6899. doi: 10.1021/es300839e CrossRefGoogle Scholar
  18. Manzo S, Rocco A, Carotenuto R, De Luca Picione F, Miglietta ML, Rametta G, Di Francia G (2011) Investigation of ZnO nanoparticlesecotoxicologicaleffectstowardsdifferentsoilorganisms. Environ Sci Poll Res 18:756–763. doi: 10.1007/s11356-010-0421-0 CrossRefGoogle Scholar
  19. Manzo S, Miglietta ML, Rametta G, Buono S, Di Francia G (2013) Toxiceffects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Sci Total Environ 15(445–446):371–376. doi: 10.1016/j.scitotenv.2012.12.051 CrossRefGoogle Scholar
  20. Northcott GL, Jones KC (2000) Spiking hydrophobic organic compounds into soil and sediment: a review and critique of adopted procedures. Environ Toxic Chem 19:2418–2430. doi: 10.1002/etc.5620191005 CrossRefGoogle Scholar
  21. Nowack B, Bucheli TD (2007) Occurrence, behaviour and effects of nanoparticles in the environment. Environ Pollut 150:5–22. doi: 10.1016/j.envpol.2007.06.006 CrossRefGoogle Scholar
  22. OECD—Organisation for Economic Co-operation and Development (1984) Earthworms acute, toxicity tests. Guideline 207, p 9 [Paris: France]Google Scholar
  23. OECD (2003) Guideline for the testing of chemicals, proposal for updating guideline 208, Terrestrial plant test, seedling emergence and seedling growth testGoogle Scholar
  24. Paschke MW, Perry LG, Redente EF (2006) Zinc toxicity thresholds for reclamation for species. Water Air Soil Pollut 170:317–330. doi: 10.1002/etc.5620191120 CrossRefGoogle Scholar
  25. Roh JY, Sim SJ, Yi J, Park K, Chung KH, Ryu DY, Choi J (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43:3933–3940. doi: 10.1021/es803477u CrossRefGoogle Scholar
  26. Saleh NB, Pfefferle LD, Elimelech M (2010) Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. Environ Sci Technol 44:2412–2418. doi: 10.1021/es903059t CrossRefGoogle Scholar
  27. Scott-Fordsmand JJ, Krogh PH, Schaefer M, Johansen A (2008) The toxicity testing of double-walled nanotubes-contaminated food to Eiseniaveneta earthworms. Ecotoxical Environ Saf 71:616–619. doi: 10.1016/j.ecoenv.2008.04.011 CrossRefGoogle Scholar
  28. Van der Ploeg MJ, Baveco JM, van der Hout A, Bakker R, Rietjens IM, van den Brink NW (2011) Effects of C60 nanoparticle exposure on earthworms (Lumbricus rubellus) and implications for population dynamics. Environ Pollut 159:198–203. doi: 10.1016/j.envpol.2010.09.003 CrossRefGoogle Scholar
  29. Waalewijn-Kool PL, Diez Ortiz M, van Gestel CA (2012) Effect of different spiking procedures on the distribution and toxicity of ZnO nanoparticles in soil. Ecotoxicology 7:1797–1804. doi: 10.1007/s10646-012-0914-3 CrossRefGoogle Scholar
  30. Zhou D, Abdel-Fattah AI, Keller AA (2012) Clay particles destabilize engineered nanoparticles in aqueous environments. Environ Sci Technol 46:7520–7526. doi: 10.1021/es3004427 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Maria Lucia Miglietta
    • 1
  • Gabriella Rametta
    • 1
  • Sonia Manzo
    • 1
  • Antonio Salluzzo
    • 1
  • Juri Rimauro
    • 1
  • Girolamo Di Francia
    • 1
  1. 1.Portici Technical Unit, C.R. PorticiENEAPorticiItaly

Personalised recommendations