Nanoparticles in facade coatings: a survey of industrial experts on functional and environmental benefits and challenges

  • Ingrid Hincapié
  • Tina Künniger
  • Roland Hischier
  • Dario Cervellati
  • Bernd Nowack
  • Claudia Som
Research Paper


Integrating engineered nanoparticles (ENPs) into facade coatings is expected to offer considerable potential for improved or novel functionality, or even several functionalities at the same time (multifunctional materials). Little information is available about the tangible use of ENPs in facade coatings and the real improvements that their functionalities provide. In order to increase this information, we carried out a survey among selected coating manufacturers and ENP producers in Europe. We asked them about the improved functionalities enabled by ENPs, the quality of nano-enhanced facade coatings in comparison to conventional ones, and the handling of waste. The survey results indicated that the ENPs most frequently used in facade coatings in Europe were silver, titanium dioxide, and silicon dioxide. The most frequently mentioned potential benefits were ultraviolet-protection, water and dirt repellency (easy to clean), and antimicrobial properties. Improving environmental performance through the use of nano-enhanced facade coatings did not appear to be a focus for innovation. The survey also revealed mixed results in the comparison between nano-enhanced and conventional facade coatings: 36 % of respondents saw a notable improvement, 27 % noted a gradual improvement of functionalities, and 37 % detected no improvement over traditional materials. Some respondents mentioned a variety of tests that can be applied to investigate the quality of coating functionalities. These tests could be valuable in helping us to better understand the tangible improvements of nano-enhanced facade coating functionalities. Respondents were uncertain about how to properly handle the wastes resulting from nano-enhanced products.


Facade coatings Paints Engineered nanomaterials Engineered nanoparticles innovation Functionality Environmental effects 



We would like to acknowledge all the respondents from industry who participated in this survey and made this study possible. The research leading to these results received funding from the European Union Seventh Framework Program (FP7/2010-2013) under grant agreement n°247′810, “NanoHouse”, as well as internal funds from Empa. We would also like to acknowledge the support of our project partners: CEA, Consorzio Venezia Ricerche, Katholieke Universiteit Leuven, Université Joseph Fourier (Laboratoire de Géophysique Interne et Tectonophysique), Materis Paints, GFC Chimica, Akzo Nobel Coatings, and PPG Industries.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11051_2015_3085_MOESM1_ESM.docx (90 kb)
Supplementary material 1 (DOCX 89 kb)


  1. Al-Kattan A, Wichser A, Vonbank R, Brunner S, Ulrich A, Zuin S, and, Nowack B (2013) Release of TiO2 from paints containing pigment-TiO2 or nano-TiO2 by weathering. Environ Sci Process Impacts 15:2155–2358 doi: 10.1039/c3em00331k
  2. Al-Kattan A, Wichser A, Zuin S, Arroyo Y, Golanski L, Ulrich A, Nowack B (2014) Behavior of TiO2 released from nano-TiO2-containing paint and comparison to pristine nano-TiO2. Environ Sci Technol 48:6710–6718. doi: 10.1039/c3em00331k CrossRefGoogle Scholar
  3. ANSES (2013) Éléments issus des déclarations des substances à l’état nanoparticulaire. French Agency for food, environmental and occupational health and safety, FranceGoogle Scholar
  4. ANSES (2014) Éléments issus des déclarations des substances à l’état nanoparticulaire – exercice 2014. French Agency for food, environmental and occupational health and safety, FranceGoogle Scholar
  5. Baer DR, Burrows PE, El-Azab AA (2003) Enhancing coating functionality using nanoscience and nanotechnology. Prog Org Coat 4:342–356. doi: 10.1016/S0300-9440(03)00127-9 CrossRefGoogle Scholar
  6. BCF (2013) Nanotechnology and the Coatings Industry, 8th October 2013. Write up. British Coatings Federation.–write-up.aspx
  7. Biswas P, Wu C-Y (2005) Nanoparticles and the Environment. J Air Waste Manag Assoc 55:708–746. doi: 10.1080/10473289.2005.10464656 CrossRefGoogle Scholar
  8. Caballero-Guzman A, Sun T, Nowack B (2015) Flows of engineered nanomaterials through the recycling process in Switzerland. Waste Manag 36:33–43. doi: 10.1016/j.wasman.2014.11.006 CrossRefGoogle Scholar
  9. EPA (2002) European Waste Catalogue and hazardous waste listGoogle Scholar
  10. EPA (2007) Quantifying the disposal of post-consumer architectural paint. U.S. Environmental Protection AgencyGoogle Scholar
  11. Hamilton M (2009) Online survey response rates and times. Background and guidance for industry. Ipathia, Inc. Ipathia, Inc./SuperSurvey.
  12. Hermann A, Küppers P, Möller M, Gross R (2009) Sichere Verwendung von Nanomaterialien in der Lack- und Farbenbranche - Ein Betriebsleitfaden. Hessisches Ministerium für Wirtschaft, Verkehr und Landesentwicklung, WiesbadenGoogle Scholar
  13. Hischier R, Nowack B, Gottschalk F, Hincapie I, Steinfeldt M, Som C (2015) Life Cycle Assessment of façade coating Systems containing manufactured nanomaterials. J Nanopart Res. doi: 10.1007/s11051-015-2881-0 Google Scholar
  14. Jahnel J, Fleischer T, Seitz SB (2013) Risk assessment of nanomaterials and nanoproducts – adaptation of traditional approaches. J Phys: Conf Ser 429:1–11. doi: 10.1088/1742-6596/429/1/012063 Google Scholar
  15. Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M, Boller M (2008) Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156:233–239. doi: 10.1016/j.envpol.2008.08.004 CrossRefGoogle Scholar
  16. Kaegi R, Sinnet B, Zuleeg S, Hagendorfer H, Mueller E, Vonbank R, Boller M, Burkhardt M (2010) Release of silver nanoparticles from outdoor facades. Environ Pollut 158:2900–2905. doi: 10.1016/j.envpol.2010.06.009 CrossRefGoogle Scholar
  17. Kaiser J-P, Zuin S, Wick P (2013) Is nanotechnology revolutionizing the paint and lacquer industry? A critical opinion. Sci Total Environ 442:282–289. doi: 10.1016/j.scitotenv.2012.10.009 CrossRefGoogle Scholar
  18. Künniger T, Fischer A, Gerecke A, Heeb M, Kunz P, Ulrich A, Vonbank R (2010) Release of Conventional and Nano-Sized Biocides from Coated Wooden Façades during Weathering: Consequences for Functionality and Aquatic Environment. In: 53rd International Convention of Society of Wood Science and Technology, Geneva, SwitzerlandGoogle Scholar
  19. Künniger T, Gerecke AC, Ulrich A, Huch A, Vonbank R, Heeb M, Wichser A, Haag R, Kunz P, Faller M (2014) Release and environmental impact of silver nanoparticles and conventional organic biocides from coated wooden façades. Environ Pollut 184:464–471. doi: 10.1016/j.envpol.2013.09.030 CrossRefGoogle Scholar
  20. Leydecker S (2008) Nanomaterials in architecture, Interior Architecture and design. Birkhauser Architecture, Berlin, pp 192Google Scholar
  21. Lubick N (2009) Promising Green Nanomaterials. Environ Sci Technol 43:1247–1249. doi: 10.1021/es900021v CrossRefGoogle Scholar
  22. Marolt T, Škapin AS, Bernard J, Živec P, Gaberšček M (2011) Photocatalytic activity of anatase-containing facade coatings. Surf Coat Technol 206:1355–1361. doi: 10.1016/j.surfcoat.2011.08.053 CrossRefGoogle Scholar
  23. Müller NC, Buha J, Wang J, Ulrich A, Nowack B (2013) Modeling the flows of engineered nanomaterials during waste handling. Environ Sci Process Impacts 15:251–259. doi: 10.1039/c2em30761h CrossRefGoogle Scholar
  24. NanoHouse (2013) NanoHouse - Life cycle of nanoparticle-based façade coatings. European Comission.,
  25. Penwarden R (2014) Response Rate Statistics for Online Surveys -What Numbers Should You be Aiming For? FluidSurveys University. Accessed 8 Oct 2014
  26. Piccino F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res. 14:1109 doi: 10.1007/s11051-012-1109-9 CrossRefGoogle Scholar
  27. Plaschkies K, Jacobs K, Scheiding W, Schmid H (2010) Alternative Wirkstoffe für Holzschutzmittel. Holz-Zentralblatt 15:376–377Google Scholar
  28. Rauscher H, Roebben G, Amenta V, Boix SA, Calzolai L, Emons H, Gaillard C, Gibson P, Linsinger T, Mech A, Quiros PL, Rasmussen K, Riego SJ, Sokull-Kluettgen B, Stamm H (2014) Towards a review of the EC Recommendation for a definition of the term “ nanomaterial”. Eur Union. doi: 10.2788/36237 Google Scholar
  29. Saha S, Kocaefe D, Sarkar D, Boluk Y, Pichette A (2011) Effect of TiO2-containing nano-coatings on the color protection of heat-treated jack pine. J Coat Technol Res 8:183–190. doi: 10.1007/s11998-010-9294-x CrossRefGoogle Scholar
  30. Saner M, Stoklosa A (2013) Societal and Administrative Benefits from the Analysis and Clarification of Definitions: the Case of Nanomaterials. Creat Innov Manag 22:26–36. doi: 10.1111/caim.12014 CrossRefGoogle Scholar
  31. Sangermano M, Malucelli G, Amerio E, Priola A, Billi E, Rizza G (2005) Photopolymerization of epoxy coatings containing silica nanoparticles. Prog Org Coat 54:134–138. doi: 10.1016/j.porgcoat.2005.05.004 CrossRefGoogle Scholar
  32. Som C, Wick P, Krug H, Nowack B (2011) Environmental and health effects of nanomaterials in nanotextiles and façade coatings. Environ Int 37:1131–1142. doi: 10.1016/j.envint.2011.02.013 CrossRefGoogle Scholar
  33. Som C, Nowack B, Krug H, Wick P (2012) Towards the development of decision supporting tools that can be used for safe production and use of nanomaterials. Acc Chem Res 46:863–872. doi: 10.1021/ar3000458 CrossRefGoogle Scholar
  34. Som C, Zondervan-van den Beuken E, Van Harmelen T, Güttinger J, Bodmer M, Brouwer D, Buist HE, Carroll R, Coll C, Fransman W, Hartmanis A, Hincapie I, Hischier R, Karachalios T, Kouravelou K, Kuijpers E, Ligthart T, Notter D, Nowack B, Seibold U, Schneider G (2014) LICARA Guidelines for the sustainable competitiveness of nanoproducts. Dübendorf, St. GallenGoogle Scholar
  35. UBA (2012) Concept for a european register of products containing nanomaterials. German Federal Environment Agency.
  36. Van Broekhuizen F, Van Broekhuizen P (2009) Nanoprodukte im europäischen Baugewerbe. Aktueller Sachstand 2009. Europäische Föderation der Bau- und Holzarbeiter/Verband der Europäischen Baugewerbe, AmsterdamGoogle Scholar
  37. van Broekhuizen P, van Broekhuizen F, Cornelissen R, Reijnders L (2011) Use of nanomaterials in the European construction industry and some occupational health aspects thereof. J Nanopart Res Perspect 1–18 doi: 10.1007/s11051-010-0195-9
  38. Zhou S, Wu L, Sun J, Shen W (2002) The change of the properties of acrylic-based polyurethane via addition of nano-silica. Prog Org Coat 45:33–42. doi: 10.1016/S0300-9440(02)00085-1 CrossRefGoogle Scholar
  39. Zuin S, Gaiani M, Ferrari A, Golanski L (2014) Leaching of nanoparticles from experimental water-borne paints under laboratory test conditions. J Nanopart Res 16:2185. doi: 10.1007/s11051-013-2185-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Ingrid Hincapié
    • 1
  • Tina Künniger
    • 2
  • Roland Hischier
    • 1
  • Dario Cervellati
    • 3
  • Bernd Nowack
    • 1
  • Claudia Som
    • 1
  1. 1.EMPA Swiss Federal Laboratories for Materials Science and Technology, Technology and Society LaboratorySt. GallenSwitzerland
  2. 2.EMPA Swiss Federal Laboratories for Materials Science and Technology, Applied Wood Materials LaboratoryDübendorfSwitzerland
  3. 3.GFC Chimica S.r.lFerraraItaly

Personalised recommendations