Double-band enhancement of effective third-order nonlinear susceptibility in gold-dielectric-gold multilayer nanoshells

Brief Communication


The effective third-order nonlinear susceptibility χ eff (3) of gold-dielectric-gold three-layer nanoshells was theoretically studied using the quasi-static approximation. Because of the physical origin from the SPR-induced local field enhancement, both the real and imaginary parts of the enhancement factor of χ eff (3) present maximum responses near the plasmon wavelengths. By altering the geometry parameters and local dielectric environment of the nanoshells, the intensity, wavelength position, and band number of the χ eff (3) could be fine tuned. The mode transformation of the χ eff (3) from single band to double band has been observed as the separate layer dielectric constant is increased or the inner gold sphere radius is increased. The band number of χ eff (3) also depends on the thickness of the outer gold shell. However, only single maximum response band of χ eff (3) could be observed when the shell thickness is too small or too large.


Third-order nonlinear susceptibility Three-layered nanoshells Metal-dielectric nanostructure Surface plasmon resonance Double bands 



This work was supported by the Fundamental Research Funds for the Central Universities under Grant No. 2011jdgz17 and the National Natural Science Foundation of China under grant No. 11174232.


  1. Bardhan R, Mukherjee S, Mirin NA, Levit SD, Nordlander P, Halas NJ (2010) Nanosphere-in-a-nanoshell: a simple nanomatryushka. J Phys Chem C 114:7378–7383CrossRefGoogle Scholar
  2. Canchal-Arias D, Dawson P (2005) Measurement and interpretation of the mid-infrared properties of single crystal and polycrystalline gold. Surf Sci 577:95–111CrossRefGoogle Scholar
  3. Chen F, Dai S, Xu T, Shen X, Lin C, Nie Q, Liu C, Heo J (2011a) Surface-plasmon enhanced ultrafast third-order optical nonlinearities in ellipsoidal gold nanoparticles embedded bismuthate glasses. Chem Phys Lett 514:79–82CrossRefGoogle Scholar
  4. Chen X, Tao J, Zou G, Su W, Zhang Q, Liu S, Wang P (2011b) Nonlinear optical properties of nanometer-size silver coated polydiacetylene composite vesicles and resulting Langmuir-Blodgett films. Appl Phys A 102:565–575CrossRefGoogle Scholar
  5. Debrus S, Lafait J, May M, Pincon N, Prot D, Sella C, Venturini J (2000) Z-scan determination of the third-order optical nonlinearity of gold:silica nanocomposites. J Appl Phys 88:4469–4475CrossRefGoogle Scholar
  6. Furtado LAM, Gómez-Malagón LA (2014) Simulation of the linear and nonlinear optical properties of colloids containing metallic core-dielectric shell nanoellipsoids. Plasmonics 9:1377–1389CrossRefGoogle Scholar
  7. Ghosh B, Chakraborty P, Singh BP, Kundu T (2009) Enhanced nonlinear optical responses in metal–glass nanocomposites. App Surf Sci 256:389–394CrossRefGoogle Scholar
  8. Golian Y, Dorranian D (2014) Effect of thickness on the optical nonlinearity of gold colloidal nanoparticles prepared by laser ablation. Opt Quantum Electron 46:809–819CrossRefGoogle Scholar
  9. Haus JW, Zhou HS, Takami S, Hirasawa M, Honma I, Komiyama H (1993) Enhanced optical properties of metal-coated nanoparticles. J Appl Phys 73:1043–1048CrossRefGoogle Scholar
  10. Hu Y, Fleming RC, Drezek RA (2008) Optical properties of goldsilica-gold multilayer nanoshells. Opt Express 16:19579–19591CrossRefGoogle Scholar
  11. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  12. Leon ID, Shi Z, Liapis AC, Boyd RW (2014) Measurement of the complex nonlinear optical response of a surface plasmon-polariton. Opt Lett 39:2274–2277CrossRefGoogle Scholar
  13. Ma H, Xiao R, Sheng P (1998) Third-order optical nonlinearity enhancement through composite microstructures. J Opt Soc Am B 15:1022–1029CrossRefGoogle Scholar
  14. Mohan S, Lange J, Graener H, Seifert G (2012) Surface plasmon assisted optical nonlinearities of uniformly oriented metal nano-ellipsoids in glass. Opt Express 20:28655–28663CrossRefGoogle Scholar
  15. Monteiro-Filho JB, Gómez-Malagón LA (2012) Resonant third order nonlinear optical susceptibility of gold nanoparticles. J Opt Soc Am B 29:1793–1798CrossRefGoogle Scholar
  16. Ning T, Chen C, Zhou Y, Lu H, Shen H, Zhang D, Wang P, Ming H, Yang G (2009) Third-order optical nonlinearity of gold nanoparticle arrays embedded in a BaTiO3 matrix. Appl Opt 48:375–379CrossRefGoogle Scholar
  17. Perenboom JAAJ, Wyder P, Meier F (1981) Electronic properties of small metallic particles. Phys Rep 78:173–292CrossRefGoogle Scholar
  18. Pinçon N, Palpant B, Prot D, Charron E, Debrus S (2002) Third-order nonlinear optical response of Au:siO2 thin films: Influence of gold nanoparticle concentration and morphologic parameters. Eur Phys J D 19:395–402CrossRefGoogle Scholar
  19. Prodan E, Lee A, Nordlander P (2002) The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells. Chem Phys Lett 360:325–332CrossRefGoogle Scholar
  20. Qian J, Li Y, Chen J, Xu J, Sun Q (2014) Localized hybrid plasmon modes reversion in Gold–Silica–Gold multilayer nanoshells. J Phys Chem C 118:8581–8587CrossRefGoogle Scholar
  21. Rativa D, Gómez-Malagón LA (2014) Third-order nonlinear optical response of layered composites materials containing gold nanoparticles. Plasmonics 9:1425–1430CrossRefGoogle Scholar
  22. Ryasnyanskiy AI, Palpant B, Debrus S, Pal U, Stepanov A (2007) Third-order nonlinear-optical parameters of gold nanoparticles in different matrices. J Lumin 127:181–185CrossRefGoogle Scholar
  23. Sharma AK, Gupta BD (2006) Fibre-optic sensor based on surface plasmon resonance with Ag–Au alloy nanoparticle films. Nanotechnology 17:124–131CrossRefGoogle Scholar
  24. Wu DJ, Xu XD, Liu XJ (2008) Tunable near-infrared optical properties of three-layered metal nanoshells. J Chem Phys 129:074711CrossRefGoogle Scholar
  25. Xenogiannopoulou E, Iliopoulos K, Couris S, Karakouz T, Vaskevich A, Rubinstein I (2008) Third-order nonlinear optical response of gold-island films. Adv Funct Mater 18:1281–1289CrossRefGoogle Scholar
  26. Xu HX (2005) Multilayered metal core-shell nanostructures for inducing a large and tunable local optical field. Phys Rev B 72:073405CrossRefGoogle Scholar
  27. Yu Y, Fan SS, Dai HW, Ma ZW, Wang X, Han JB, Li L (2014) Plasmon resonance enhanced large third-order optical nonlinearity and ultrafast optical response in Au nanobipyramids. Appl Phys Lett 105:061903CrossRefGoogle Scholar
  28. Zhu J, Huang X, Li JJ, Zhao JW (2009) Theoretical calculation of enhancement factor of third-order nonlinear susceptibility in gold nanowire and nanotube. J Optoelectron Adv M 11:56–61Google Scholar
  29. Zhu J, Li JJ, Zhao JW (2011) Tuning the dipolar plasmon hybridization of multishell metal-dielectric nanostructure: gold nanosphere in a gold nanoshell. Plasmonics 6:527–534CrossRefGoogle Scholar
  30. Zhu J, Li JJ, Yuan L, Zhao JW (2012a) Optimization of three-layered Au–Ag bimetallic nanoshells for triple-bands surface plasmon resonance. J Phys Chem C 116:11734–11740CrossRefGoogle Scholar
  31. Zhu J, Ren YJ, Zhao SM, Zhao JW (2012b) The effect of inserted gold nanosphere on the local field enhancement of gold nanoshell. Mater Chem Phys 133:1060–1065CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and TechnologyXi’an Jiaotong UniversityXi’anPeoples Republic of China
  2. 2.Non-Equilibrium Condensed Matter and Quantum Engineering Laboratory, The Key Laboratory of Ministry of Education, School of ScienceXi’an Jiaotong UniversityXi’anPeoples Republic of China

Personalised recommendations